首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

2.
The induction and role of nitric oxide (NO) during antigen presentation by macrophages to T helper (Th) cell subsets was examined. When cultured with Th1 clones, macrophage APC produced NO only in the presence of cognate Ag, which in turn suppressed T cell proliferation. IFN-gamma production by the activated Th1 cells was essential for the induction of NO. Th2 cells presented with the same cognate Ag did not induce NO production and proliferated uninhibited. Coactivation of Th1 and Th2 cells specific for the same Ag indicated that Th2 cells did not inhibit NO production, but were sensitive to NO induced by stimulated Th1 cells. Antigenic activation of Th2 cells in the presence of rIFN-gamma resulted in NO-mediated inhibition of proliferation. Th2 cells provided only a cell-associated cofactor, whereas Th1 cells secreted a soluble cofactor for IFN-gamma as well, i.e., TNF-alpha. Finally, a role for IFN-gamma and NO during immune responses was studied in spleen cells obtained from immunized IFN-gamma(-/-) mice. NO production and subsequent inhibition of Ag-specific proliferation ex vivo was observed only after the addition of rIFN-gamma. These studies suggest an IFN-gamma-dependent regulatory role for NO during Ag-specific Th cell activation involving macrophages, with obvious implications for Th subset-dependent immune responses in general.  相似文献   

3.
Peritoneal macrophages from mice infected with an extracellular parasite, Trypanosoma musculi were effective in inhibiting parasite proliferation in vitro. This trypanostatic activity could be suppressed by NG monomethyl-L-arginine (NGMMA), a specific inhibitor of a biochemical pathway synthesizing L-citrulline and inorganic nitrogen oxides from L-arginine. Macrophages exerted this in vitro antiproliferative effect from the 10th day of infection on and this activity was maximum around 14th day of infection. Nitrite production paralleled development of macrophage trypanostatic activity. Macrophages collected from BCG-infected mice or treated with IFN-gamma in vitro also exerted a trypanostatic activity which was suppressed by NGMMA. A trypanostatic activity suppressed by NGMMA was also exerted by splenic macrophages from T. musculi-infected mice. Trypanostatic activity of IFN-gamma-treated macrophages was reduced by addition of anti-TNF-alpha showing the participation of TNF-alpha in IFN-gamma-mediated macrophage trypanostatic activity. Nitric oxide (NO) gas inhibited T. musculi proliferation. Addition of excess iron reversed the trypanostatic effect of both macrophages and NO gas. All these data showed that, as reported for a broad spectrum of microorganisms, activated macrophages displayed an antimicrobial effect on trypanosomes through the L-arginine: NO pathway that could participate in controlling infection in T. musculi-infected mice before appearance of antibody-dependent mechanisms. NO production by activated macrophages could trigger iron loss from critical target enzymes in trypanosomes.  相似文献   

4.
5.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

6.
Evidence is provided that inhibition of macrophage NO production can augment in vivo CTL responses. Specifically, administration of NG-monomethyl-l -arginine (NGMMA) via osmotic pumps increases the tumor-specific CTL response against the P815 mastocytoma in the peritoneal cavity of preimmunized mice. Both the magnitude and duration of the CTL response were increased. That the augmented CTL response resulted from inhibition of the NO synthase pathway is supported by the finding that macrophage NO production from NGMMA-treated mice was reduced. Also, in vitro inhibition of NO production by peritoneal exudate cells from P815 tumor-challenged mice augmented the secondary CTL response observed. Cell proliferation was augmented by NGMMA in these cultures, suggesting that macrophage NO may suppress CTL by inhibiting clonal expansion. NO-mediated inhibition was observed in vivo in this experimental system, even though the CTL response is not suppressed, in that tumor rejection occurs. Therefore, the present results are consistent with the conclusion that macrophage NO-mediated inhibition of the CTL response is a side effect of activating macrophages rather than resulting from the action of a distinct subset of what have long been termed suppressor macrophages. Most important, the results indicate that NO-mediated suppressor macrophage activity can be an important CTL immunoregulatory element in vivo.  相似文献   

7.
To examine how macrophage-derived nitric oxide (NO) affects T helper (Th) cell activity, T cell clones representing Th1 and Th2 subsets were activated before exposure to stimulated peritoneal macrophages or microglia. Both Th subsets were similarly sensitive to inhibition by NO, indicating that macrophage-derived NO regulates the proliferation of activated Th1 and Th2 cells equally well. Since IFN-gamma production remained intact in NO-treated Th1 cells, we studied whether NO was produced during antigen-specific activation of Th1 cells by unstimulated macrophages. Indeed, T cell proliferation only occurred when a NO synthase inhibitor was included, while IFN-gamma was essential for the induction of NO. These studies demonstrate that macrophages produce NO following antigen presentation to Th1 cells and that macrophage-derived NO inhibits Th1 and Th2 cell proliferation without inhibiting cytokine production.  相似文献   

8.
A molecular explanation for "suppressor" macrophage inhibition of lymphocyte proliferation is described. NG-monomethyl-L-arginine (NGMMA), a specific inhibitor of the nitric oxide synthetase pathway, markedly augments Con A-induced proliferation of rat splenic leukocytes. Macrophages are necessary and sufficient for NGMMA-releasable-suppression, as indicated by a loss of suppression after either pretreatment of isolated splenic macrophages with NGMMA or their depletion by plastic adherence or L-leucine methyl ester. L- (but not D-) arginine overrides NGMMA-releasable suppression, and suppression is blocked by RBC as would be expected if nitric oxide were the effector molecule. Unlike rats, NGMMA did not augment Con A-induced proliferation of normal mouse splenic leukocytes. However, NGMMA did augment Con A-induced proliferation of mouse splenic leukocytes induced to contain suppressor macrophages by intravenous injection of Corynebacterium parvum, which suggests a quantitative, not qualitative, difference in suppressor macrophages between rats and mice. Nitrite production, as an indicator of nitric oxide synthesis, correlated with suppressor macrophage activity in rats and mice and was inhibited by NGMMA. Finally, NGMMA also markedly enhanced proliferation with every other mitogen examined (PHA, protein A, PWM, and LPS). It is concluded that immunoregulation of lymphocyte proliferation by suppressor macrophages is mediated, in part, directly or indirectly by products of the nitric oxide synthetase pathway.  相似文献   

9.
Activated macrophages have been demonstrated to metabolize the amino acid L-arginine by the oxidative pathway to produce nitric oxide, citrulline, and NO2-/NO3-. Nitric oxide has been shown to be cytostatic for tumor targets and to inhibit the mitochondrial respiration and other functions of the macrophages that produce it. Addition of NG monomethyl-L-arginine (NMA), a competitive inhibitor of oxidative L-arginine metabolism, to rat splenocyte (SPL) MLC results in allospecific lymphocyte proliferation and CTL induction. In the absence of NMA, neither proliferation nor CTL induction is observed. Citrulline and NO2-/NO3- levels in the supernatants of rat SPL MLC are decreased in the presence of NMA compared with cultures without NMA. NMA also augments the proliferation and CTL induction in mouse SPL MLC. Detectable levels of cytokines able to induce T cell proliferation were present in supernatants of rat SPL MLC without NMA on days 1 to 5 of culture. Supernatants of cultures with NMA contained detectable levels of cytokines on days 1 to 3 and undetectable levels by days 4 and 5 of culture, concomitant with the observed lymphocyte proliferation and presumed depletion of cytokines. Thus, inhibition of rat SPL proliferation to alloantigen seems not to be caused by the lack of production of cytokines able to induce T cell proliferation. The inhibition of proliferation and CTL induction in rat SPL cultures may be caused by a direct effect of the cytostatic products of oxidative L-arginine metabolism on lymphocyte proliferation, or by an indirect deleterious effect on the mitochondrial respiration and viability of macrophages that oxidatively metabolize L-arginine. Alternatively, diversion of L-arginine to the oxidative pathway may affect production of polyamines that are necessary for cell growth and proliferation.  相似文献   

10.
Spleen cells of two rat strains, Lewis and Brown Norway (BN), have been activated by lectins and by antibodies specific for immunoglobulin isotypes embedded in their cell membranes. Optimal concentrations of antibodies specific for mu, gamma, or delta-chains of rat augments in vitro incorporation of 3H-TdR 5 to 18-fold in Lewis B lymphocytes and 1.5 to 4-fold in BN B lymphocytes. In addition, F(ab')2 fragments of anti-Ig reagents induced Lewis splenic B cells but not BN B cells to incorporate 3H-TdR. Responses to LPS and dextran sulfate, B lymphocyte mitogens, measured by radioactive uptake, were five to 10 times greater in Lewis B cell populations than in BN B cell populations. Density of surface Ig isotypes and capping kinetics were similar in the two rat strains, although the percentage of T cells, T cell subsets, B cells, and Ia+ B cells differed in the spleens of these strains of rats. Both T lymphocytes and macrophages were needed in culture to effect an optimal response. IL-2 restored the response in B cell cultures depleted of T cells and macrophages, and enhanced 3H-TdR uptake in whole spleen cells of Lewis but not BN rats. The strain-dependent responsiveness of B cells to specific anti-Ig reagents or B cell mitogens appears to be associated with inherent (genetic) defects in T cells and B cells or defects in T cell to B cell cooperation in BN rats.  相似文献   

11.
To study the effect of nitric oxide (NO) on the activity of Th subsets, cloned Th1 and Th2 lymphocytes were stimulated in the presence of an NO donor. NO, when present from the start of incubation, inhibited the proliferation of both Th subsets dose-dependently, achieving complete inhibition at a relatively low level. The addition of NO 24 h after the onset of T cell stimulation also resulted in reduced proliferation of both Th subsets, suggesting that NO affects a late process during T cell activation. Stimulation of T cells in the presence of NO did not induce apoptosis at the concentrations that completely inhibited proliferation, although apoptosis became evident at higher NO concentrations. The secretion of several cytokines (i.e., IFN-gamma, IL-4, and IL-5) was slightly upregulated, while IL-2 production was modestly inhibited in the presence of NO. However, exogenous IL-2 did not reverse the NO-induced inhibition of T cell proliferation, nor did additional stimulation with phorbol esters. Finally, expression of IL-2R was modestly decreased in the presence of NO, although TCR expression was not affected. These studies demonstrate that relatively low concentrations of NO induce a strong and specific inhibition of T cell proliferation in both Th subsets, suggesting that local NO production may regulate Th-mediated tissue inflammation.  相似文献   

12.
NO, which suppresses T cell proliferation, may be inactivated by superoxide (O2-) due to their strong mutual affinity. To examine this possibility, preactivated Th clones were cocultured with stimulated macrophages. PMA neutralized the inhibitory activity of NO, which was dependent on extracellular O2- production. In contrast, macrophages from p47phox -/- (pKO) mice, which lack functional NADPH oxidase, retained their NO-dependent inhibition of T cell proliferation upon stimulation with PMA, indicating that NADPH oxidase is the major source of NO-inactivating O2- in this system. To examine the NO-O2- interaction in vivo, the role of NADPH oxidase in experimental autoimmune encephalomyelitis was studied in pKO mice. No clinical or histological signs were observed in the pKO mice. Neither a bias in Th subsets nor a reduced intensity of T cell responses could account for the disease resistance. Although spleen cells from pKO mice proliferated poorly in response to the immunogen, inhibition of NO synthase uncovered a normal proliferative response. These results indicate that NO activity may play a critical role in T cell responses in pKO mice and that in normal spleens inhibition of T cell proliferation by NO may be prevented by simultaneous NADPH oxidase activity.  相似文献   

13.
Stromal microenvironments of bone marrow, lymph nodes, and spleen have been shown to be able to regulate immune cell differentiation and function. Our previous studies demonstrate that splenic stroma could drive mature dendritic cells (DC) to further proliferate and differentiate into regulatory DC subset that could inhibit T cell response via NO. However, how splenic stroma-educated regulatory DC release NO and whether other molecules are involved in the suppression of T cell response remain unclear. In this study, we show that splenic stroma educates regulatory DC to express high level of Fas ligand (FasL) by TGF-β via ERK activation. The findings, that inhibition of CD4 T cell proliferation by regulatory DC required cell-to-cell contact and FasL deficiency impaired inhibitory effect of regulatory DC, indicate that regulatory DC inhibit CD4 T cell proliferation via FasL. Then, regulatory DC have been found to be able to induce apoptosis of activated CD4 T cells via FasL in caspase 8- and caspase 3-dependent manner. Interestingly, FasL on regulatory DC enhanced IFN-γ production from activated CD4 T cells, and in turn T cell-derived IFN-γ induced NO production from regulatory DC, working jointly to induce apoptosis of activated CD4 T cells. Blockade of IFN-γ and NO could reduce the apoptosis induction. Therefore, our results demonstrated that splenic stroma-educated regulatory DC induced T cell apoptosis via FasL-enhanced T cell IFN-γ and DC NO production, thus outlining a new way for negative regulation of T cell responses and maintenance of immune homeostasis by regulatory DC and splenic stromal microenvironment.  相似文献   

14.
IL-10, a newly designated cytokine primarily produced by the Th2 subset of CD4+ T lymphocytes and Ly-1+ B lymphocytes, has recently been hypothesized to inhibit cytokine production by Th1 T cell clones by blocking accessory cell- (AC) dependent costimulatory function. To evaluate the effect of IL-10 on Con A-induced proliferative responses of resting murine T cells, purified T cells were cultured with different types of AC. The addition of IL-10 produced a 70 to 90% inhibition of resting T lymphocyte proliferation when purified populations of macrophages were used as AC, but had no effect on the AC function of T-depleted spleen cells, activated B cells, dendritic cells, or L cells. The inhibitory effects of IL-10 were inversely related to the concentration of mitogen and could be reversed by the addition of the neutralizing anti-IL-10 mAb, SXC1. The inhibition of macrophage AC function was not related to the induction of a suppressor cytokine as stimulation by mixtures of macrophages and limiting numbers of dendritic cells was not inhibited. The decrease in proliferative responses was primarily secondary to inhibition of IL-2 production although the failure of exogenous IL-2 to completely reconstitute the response suggested that IL-10 may also exert inhibitory effects on the induction of expression of a functional IL-2R. These results are most consistent with a model in which IL-10 inhibits the induction of expression on macrophages of a critical costimulatory molecule that may be constitutively expressed on other types of AC.  相似文献   

15.
Thoracic duct lymph of lymphadenectomized Brown-Norway (BN) rats is highly enriched for nonlymphoid cells (NLC) which share several characteristics with splenic dendritic cells (DC), e.g., the binding of monoclonal antibody OX2. The accessory cell activity of NLC was analyzed by comparing these cells with DC and splenic adherent cells (SAC). In concanavalin A (Con A)-induced T-cell proliferation NLC, like DC, were very effective accessory cells at low cell numbers, as a consequence of an efficient induction of interleukin 2 (IL-2) production and IL-2 responsiveness. Responses in the presence of SAC were poor, even after the addition of excess IL-2. A fourfold enhancement of accessory cell activity of SAC was achieved by the depletion of FcR-positive cells, which were responsible for suppression of the Con A response. Low responsiveness of BN rats with respect to Lewis rats can in part be explained by a higher suppressive activity of macrophages in the BN rat.  相似文献   

16.
Spleen cells, resting T cells, activated T cells, and T cell clones characterized as type 1 (Th1) and type 2 (Th2) were investigated for their ability to produce interferon (IFN) following in vitro culture with Newcastle disease virus (NDV). All of the above cell populations, including both Th1 and Th2 T cell clones, produced high levels of IFN following in vitro culture with NDV. This IFN was characterized as a mixture of IFN-alpha and IFN-beta with IFN-alpha being the predominate species of IFN contained in the mixture. IL-2 greatly enhanced the production of IFN-alpha/beta by all cell populations in response to NDV. These different T cell populations responded very differently to the immunoregulatory actions of IFN-gamma versus IFN-alpha/beta. IFN-alpha/beta was shown to be a potent inhibitor of Con A or IL-2-induced proliferation of different T cell populations. This inhibition was not associated with a reduction in lymphokine production since spleen cells or Th1 T cell clones cultured with Con A and IFN-alpha/beta had no decrease in IL-2 or IFN-gamma production when compared to Con A-stimulated control cultures. IFN-gamma had little to no inhibitory activity on Con A-induced proliferation of spleen cells. In fact, Con A-induced proliferation was usually enhanced by IFN-gamma when nylon wool-enriched T cells were assessed. Different results were observed when IFN-gamma and IFN-alpha/beta were investigated for their ability to inhibit IL-2-induced proliferation of different T helper cell clones. IFN-gamma and IFN-alpha/beta were both capable of inhibiting IL-2-induced proliferation of T cell clones characterized as type 2 (Th2). In contrast, IFN-gamma had no effect on IL-2-induced proliferation of Th1 clones. IFN-alpha/beta, however, inhibited IL-2-induced proliferative responses of both Th1 and Th2 T cell clones. These results document the facts that (1) IFN-gamma and IFN-alpha/beta differ in their immunoregulatory actions, (2) different T cell subpopulations vary in their susceptibility to IFN-gamma regulation, and (3) virus induction of IFN-alpha/beta appears to be a ubiquitous function associated with different T cell populations.  相似文献   

17.
Activated murine peritoneal macrophages inhibit the intracellular proliferation of Toxoplasma gondii and produce a number of cytokines, such as TNF-alpha and IL-1. Both TNF-alpha and IL-1 have been reported to be involved in the immune response against various microorganisms, but the mechanisms responsible for these effects are not known. In the present study it was investigated whether endogenously produced TNF-alpha and IL-1 are involved in the activation of peritoneal macrophages by rIFN-gamma leading to toxoplasmastatic activity and the production of reactive nitrogen intermediates. The rIFN-gamma-induced toxoplasmastatic activity was inhibited by neutralizing antibodies against mouse TNF-alpha in a dose-dependent and time-dependent way, but neutralizing antibodies against mouse IL-1 alpha and IL-1 beta did not affect this activity. Involvement of TNF-alpha in the induction of toxoplasmastatic activity was confirmed by our finding that rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma inhibited the intracellular proliferation of T. gondii. No synergistic activity of rIL-1 and rIFN-gamma on the inhibition of T. gondii proliferation was found. Both rTNF-alpha and rIL-1 alpha alone inhibited the intracellular proliferation of T. gondii only slightly. Because it has been reported recently that activated macrophages produce reactive nitrogen intermediates that are essential in the induction of toxoplasmastatic activity, we investigated whether these intermediates are involved in the TNF-dependent induction of toxoplasmastatic activity. Neutralizing antibodies against mouse TNF-alpha inhibited also the release of NO2- by rIFN-gamma-activated macrophages almost completely. Macrophages incubated with rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma released substantial amounts of NO2-, but rTNF-alpha and rIL-1 alpha alone, and the combination of rIL-1 alpha and a nonactivating concentration of rIFN-gamma induced only little NO2(-)-release by macrophages. To assess whether reactive nitrogen intermediates act directly or indirectly on the intracellular proliferation of T. gondii, macrophages were incubated with the L-arginine analog NG-monomethyl-L-arginine or the NADPH-inhibitor diphenylene iodonium, both inhibitors of the generation of reactive nitrogen intermediates. Good correlation was found between toxoplasmastatic activity and the release of NO2- during the 24-h activation period before infection of the macrophages with T. gondii, but no correlation was found between toxoplasmastatic activity and the release of NO2- during infection of the macrophages.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have previously demonstrated that IFN-alpha/beta, poly I:C (an inducer of IFN-alpha/beta), and IFN-gamma can inhibit the ability of KLH-pulsed peritoneal macrophages to induce proliferation of syngeneic, KLH immune T lymphocytes in CBA/J mice. In this study, we show that this IFN-induced immunosuppression is not restricted to CBA/J (H-2k) mice but is also seen in BALB/cJ (H-2d) mice. A similar inhibition of proliferation is observed with the KLH-specific T cell hybridoma BDK, 100, which requires KLH-pulsed macrophages for optimum proliferation and IL-2 production. The immunosuppression produced by IFN was also independent of the antigen employed. Inhibition of T lymphocyte proliferation was observed when casein, instead of KLH, was used to immunize T cells and to pulse peritoneal macrophages in vivo. Utilizing KLH and casein, the antigen specificity of the inhibition was demonstrated. Therefore, the inhibition by the IFN-inducer poly I:C of macrophage-induced, antigen-specific T cell proliferation is not limited by H-2 type of the mice or to one antigen.  相似文献   

19.
Cholera toxin (CT) is a potent oral immunogen that also acts as a strong mucosal adjuvant for immune responses to related as well as unrelated Ag. To elucidate the immunomodulating effects of CT at the cellular level we have examined interactions of CT with APC and with B and T lymphocytes in vitro. CT markedly stimulated the production of IL-1 from APC (mouse peritoneal macrophages or macrophage cell line P388D1) but did not induce Ia-Ag and had marginal, if any, effect in potentiating Ia Ag expression stimulated by rIFN-gamma on these cells. CT had differential effect on T cell proliferation in vitro, usually strongly inhibitory but on Con A-stimulated spleen cells during prolonged (greater than or equal to 5 days) culture or when added on day 4 or later to these cultures up to a two- to three-fold enhancement of proliferation was seen. CT-induced inhibition of T cell proliferation was associated with decreased production of IL-2 and anergy to exogenously added IL-2 despite apparently normal expression of IL-2R. Similar to what was found with T cells LPS-stimulated spleen B cells demonstrated both inhibition and enhancement of proliferation in the presence of CT: in high concentrations (greater than or equal to 10(-8) M) and early in culture (day 3) CT had a strong inhibitory effect on the proliferation of B cells, whereas later (day 6) and/or at lower CT concentrations (10(-9) to 10(-11) M) the proliferation was increased up to 10-fold. The net effect of CT treatment on Ig-production by LPS-stimulated spleen B cells was seen as an enhanced level of IgA and IgG but not IgM in culture supernatants. The differential effects of CT on the cells of the immune system observed in vitro may, singly or in combination, explain the immunostimulatory function of CT.  相似文献   

20.
Our preliminary studies with tylophora alkaloids had shown that they inhibit cellular immune responses like contact sensitivity to dinitro-flurobenzene and delayed hypersensitivity to sheep red blood cells, in vivo. Investigations were hence carried out to determine the cellular targets of tylophora alkaloids in in vitro systems. Con A induced proliferation of splenocytes was used as a model system to study the effect of the alkaloids on cellular immune responses. The alkaloid mixture was found to inhibit proliferation of splenocytes at higher concentrations and augment the same at lower concentrations. Both macrophages and T cells were found to be vulnerable to tylophora alkaloids. The alkaloid mixture suppressed IL-2 production in Con A stimulated splenocytes at the inhibitory or higher concentrations and enhanced production at the lower concentrations. IL-1 production by activated macrophages on the contrary was doubled in the presence of inhibitory concentrations of tylophora. These studies indicate that tylophora alkaloids have a concentration dependent biphasic effect on Con A induced mitogenesis. At lower concentrations they augment Con A induced lymphoproliferation by enhancing IL-2 production. Inhibition of proliferation at higher concentrations of the alkaloid is due to inhibition of IL-2 production and activation of macrophages, which have a cytostatic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号