首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Thioredoxin-dependent redox regulation of p53-mediated p21 activation   总被引:18,自引:0,他引:18  
Thioredoxin (TRX) is a dithiol-reducing enzyme that is induced by various oxidative stresses. TRX regulates the activity of DNA-binding proteins, including Jun/Fos and nuclear factor-kappaB. TRX also interacts with an intranuclear reducing molecule redox factor 1 (Ref-1), which enhances the activity of Jun/Fos. Here, we have investigated the role of TRX in the regulation of p53 activity. Electrophoretic mobility shift assay showed that TRX augmented the DNA binding activity of p53 and also further potentiated Ref-1-enhanced p53 activity. Luciferase assay revealed that transfection of TRX enhanced p53-dependent expression of p21 and further intensified Ref-1-mediated p53 activation. Furthermore, Western blot analysis revealed that p53-dependent induction of p21 protein was also facilitated by transfection with TRX. Overexpression of transdominant negative mutant TRX (mTRX) suppressed the effects of TRX or Ref-1, showing a functional interaction between TRX and Ref-1. cis-Diamminedichloroplatinum (II) (CDDP) induced p53 activation and p21 transactivation. The p53-dependent p21 transactivation induced by CDDP was inhibited by mTRX overexpression, suggesting that TRX-dependent redox regulation is physiologically involved in p53 regulation. CDDP also stimulated translocation of TRX from the cytosol into the nucleus. Hence, TRX-dependent redox regulation of p53 activity indicates coupling of the oxidative stress response and p53-dependent repair mechanism.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Microenvironmental hypoxia gives many tumor cells the capacity for drug resistance. Thioredoxin family members play critical roles in the regulation of cellular redox homeostasis in a stressed environment. In this study, we established a hypoxia–drug resistance (hypoxia-DR) model using HepG2 cells and discovered that the overexpression and nuclear translocation of thioredoxin-1 (Trx-1) are closely associated with this resistance through the regulation of the metabolism by the oxidative stress response to glycolysis. Intranuclear Trx-1 enhances the DNA-binding activity of HIF-1α via its interaction with and reducing action on Ref-1, resulting in increased expression of glycolysis-related proteins (PDHK1, HKII, and LDHA), glucose uptake, and lactate generation under hypoxia. Meanwhile, we found that GL-V9, a newly synthesized flavonoid derivative, shows an ability to reverse the hypoxia-DR and has low toxicity both in vivo and in vitro. GL-V9 could inhibit the expression and nuclear translocation of Trx-1 and then suppress HIF-1α DNA-binding activity by inhibiting the Trx-1/Ref-1 axis. As a result, glycolysis is weakened and oxidative phosphorylation is enhanced. Thus, GL-V9 leads to an increment in intracellular ROS generation and consequently intensified apoptosis induced by DDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号