首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed for the purification to homogeneity of guinea-pig complement component C2. Contrary to previous reports, guinea-pig C2 is a single polypeptide chain with apparent mol.wt. of 102000, the same as human C2. It is cleaved by C1s to yield fragments C2a (apparent molwt. 74000) and C2b (apparent mol.wt. 34000). The amino acid composition and N-terminal sequences of these fragments are similar to those of human C2a and C2b. Human and guinea-pig C2 show more extensive sequence homology to Factor B than previously identified. The known homology around the sites of cleavage by C1s and Factor D has now been extended by a stretch of ten identical or conservatively substituted residues. Sequence homology has now been identified at the N-terminal of C2b and Factor Ba. The properties of the classical-pathway C3 convertases assembled from human C4b, C1s and human or guinea-pig C2 have been compared. The rates of cleavage of human and guinea-pig C2 by C1s (and therefore the rates of assembly of the C3 convertases) are similar. The rate of decay of the activity of the C3 convertase formed from guinea-pig C2 is 10-fold lower than for human C2. This greater stability reflects a higher affinity of guinea-pig C2a for human C4b. The presence of C2b is not necessary for C3 convertase activity.  相似文献   

2.
C3/C5 convertase is a serine protease that cleaves C3 and C5. In the present study we examined the C5 cleaving properties of classical pathway C3/C5 convertase either bound to the surface of sheep erythrocytes or in its free soluble form. Kinetic parameters revealed that the soluble form of the enzyme (C4b,C2a) cleaved C5 at a catalytic rate similar to that of the surface-bound form (EAC1,C4b,C2a). However, both forms of the enzyme exhibited a poor affinity for the substrate, C5, as indicated by a high Km (6-9 microM). Increasing the density of C4b on the cell surface from 8,000 to 172,000 C4b/cell did not influence the Km. Very high affinity C5 convertases were generated only when the low affinity C3/C5 convertases (EAC1,C4b,C2a) were allowed to deposit C3b by cleaving native C3. These C3b-containing C3/C5 convertases exhibited Km (0.0051 microM) well below the normal concentration of C5 in blood (0.37 microM). The data suggest that C3/C5 convertase assembled with either monomeric C4b or C4b-C4b complexes are inefficient in capturing C5 but cleave C3 opsonizing the cell surface with C3b for phagocytosis. Deposition of C3b converts the enzymes to high affinity C5 convertases, which cleave C5 in blood at catalytic rates approaching Vmax, thereby switching from C3 to C5 cleavage. Comparison of the kinetic parameters with those of the alternative pathway convertase indicates that the 6-9-fold greater catalytic rate of the classical pathway C5 convertase may compensate for the fewer numbers of C5 convertase sites generated upon activation of this pathway.  相似文献   

3.
The multi-domain serine protease C2 provides the catalytic activity for the C3 and C5- convertases of the classical and lectin pathways of complement activation. Formation of these convertases requires the Mg(2+)-dependent binding of C2 to C4b, and the subsequent cleavage of C2 by C1s or MASP2, respectively. The C-terminal fragment C2a consisting of a serine protease (SP) and a von Willebrand factor type A (vWFA) domain, remains attached to C4b, forming the C3 convertase, C4b2a. Here, we present the crystal structure of Mg(2+)-bound C2a to 1.9 A resolution in comparison to its homolog Bb, the catalytic subunit of the alternative pathway C3 convertase, C3bBb. Although the overall domain arrangement of C2a is similar to Bb, there are certain structural differences. Unexpectedly, the conformation of the metal ion-dependent adhesion site and the position of the alpha7 helix of the vWFA domain indicate a co-factor-bound or open conformation. The active site of the SP domain is in a zymogen-like inactive conformation. On the basis of these structural features, we suggest a model for the initial steps of C3 convertase assembly.  相似文献   

4.
Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF.  相似文献   

5.
Three mechanisms that regulate the formation and function of the fluid-phase classical pathway C3 convertase (C4b2a) have been elucidated: a) a temperature-mediated intrinsic decay of the enzyme; b) an extrinsic accelerated decay mediated by the effect of the serum protein C4b-binding protein (C4-bp); and c) the inactivation of C4b in the C4b-C4b-p complex by the proteolytic action of C3b/C4b inactivator (I), which cleaves the alpha 1-chain of C4b yielding C4d (alpha 2-chain), and C4c (alpha 3-, alpha 4-, beta-, gamma-chains). A fourth mechanism is described based on the observation that the IgG fraction of the serum of certain patients with glomerulonephritis contains a protein that prevents the intrinsic and C4-bp-mediated decay of surface-bound C4b2a. This protein prolongs the half-life of fluid-phase C4b2a from 10 min to more than 5 hr, increasing the utilization of C3. It also inhibits the decay mediated by C4-bp by preventing the dissociation of C2a from the C4b, 2a complex. In addition, I alone or in the presence of C4-bp fails to cleave the alpha 1-chain of C4b in the stabilized C4b, 2a complex. This protective property of the stabilizing factor (NFc) requires the presence of C2a because C4b was not protected unless it was bound to C2a. Therefore, NFc provides a mechanism by which the serum regulatory proteins are bypassed.  相似文献   

6.
Four CR1 variants have been found in the normal population and are designated CR1-A (190,000 daltons), CR1-B (220,000 daltons), CR1-C (160,000 daltons), and CR1-D (250,000 daltons). In the present study, we first developed an improved chromatographic purification scheme for CR1 that does not employ a C3b affinity step. CR1 variants (A, B, and C) were then isolated, and their individual functional activity was assessed. Each possessed similar co-factor activity for I-mediated cleavage of C3(H2O), as well as for the inhibitory activity for fluid phase C3 convertases. These results indicate that, despite relatively large Mr differences, in the purified state these three CR1 variants have similar functional activities. The functional activity of CR1 was also compared with C4bp, H, and decay accelerating factor (DAF) in fluid phase assays designed to assess the inhibition of the C3 convertases and co-factor activity. On a molar basis, CR1 had approximately the same inhibitory activity as C4bp for the classical pathway convertase, and had the same as H for the alternative pathway convertase. These results indicate that CR1 encompasses the functional capabilities of both proteins. They also raise a number of interesting genetic and structural questions in regard to these complement regulatory proteins, because C4bp is thought to have multiple C4b binding domains, whereas H is reported to bind one C3b. DAF was an approximately fourfold better inhibitor of the alternative pathway convertase than CR1 or H, but was a fourfold less efficient inhibitor of the classical pathway convertase than CR1 or C4bp. The effective inhibitory capacity of DAF in these fluid phase assay systems suggests that the DAF substrate specificity is for the convertases. Fluid phase CR1 was twofold less efficient than H in serving as a co-factor for the first cleavage of fluid phase C3b, and hardly mediated the second cleavage. These data are in contrast to the co-factor activity of CR1 on a cell membrane, and provide additional evidence for the local environment being a critical modulator of the function of proteins that regulate the activation of C3.  相似文献   

7.
The cleavage of human complement component C5 to fragment C5b by the alternative pathway C5 convertase was studied. The alternative-pathway C5 convertase on zymosan can be represented by the empirical formula zymosan--C3b2BbP. Both properdin-stabilized C3 and C5 convertase activities decay with a half life of 34 min correlating with the loss of the Bb subunit. The C5 convertase functions in a stepwise fashion: first, C5 binds to C3b and this is followed by cleavage of C5 to C5b. The capacity to bind C3b is a stable feature of component C5, as C5b also has this binding capacity. Component C5, unlike component C3, does not form covalent bonds with zymosan after activation, and C5 is not inhibited by amines. Therefore C5, although similar in structure to C3, does not appear to contain the internal thioester group reported for C3 and C4.  相似文献   

8.
The cleavage of C3 by the C3 convertases (C3bBb and C4b2a) determines whether complement activation proceeds. Dissociation (decay acceleration) of these central enzymes by the regulators decay-accelerating factor (DAF), complement receptor 1 (CR1), factor H, and C4-binding protein (C4BP) controls their function. In a previous investigation, we obtained evidence implicating the alpha4/5 region of the type A domain of Bb (especially Tyr338) in decay acceleration of C3bBb and proposed this site as a potential interaction point with DAF and long homologous repeat A of CR1. Because portions of only two DAF complement control protein domains (CCPs), CCP2 and CCP3, are necessary to mediate its decay of the CP C3 convertase (as opposed to portions of at least three CCPs in all other cases, e.g. CCPs 1-3 of CR1), DAF/C4b2a provides the simplest structural model for this reaction. Therefore, we examined the importance of the C2 alpha4/5 site on decay acceleration of C4b2a. Functional C4b2a complexes made with the C2 Y327A mutant, the C2 homolog to factor B Y338A, were highly resistant to DAF, C4BP, and long homologous repeat A of CR1, whereas C2 substitutions in two nearby residues (N324A and L328A) resulted in partial resistance. Our new findings indicate that the alpha4/5 region of C2a is critical to decay acceleration mediated by DAF, C4BP, and CR1 and suggest that decay acceleration of C4b2a and C3bBb requires interaction of the convertase alpha4/5 region with a CCP2/CCP3 site of DAF or structurally homologous sites of CR1 and C4BP.  相似文献   

9.
Transient States of Adenylate Cyclase in Brain Membranes   总被引:3,自引:1,他引:2  
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Human complement factor B is the crucial catalytic component of the C3 convertase enzyme that activates the alternative pathway of complement-mediated immunity. Although a serine protease in its own right, factor B circulates in human serum as an inactive zymogen and there is a crystal structure only for the inactive state of factor B and various fragments. To provide greater insight to the catalytic function and properties of factor B, we have used short para-nitroanilide derivatives of 4- to 15-residue peptides as substrates to profile the catalytic properties of factor B. Among factors found to influence catalytic activity of factor B was an unusual dependence on pH. Non-physiological alkaline conditions strongly promoted substrate cleavage by factor B, consistent with a pH-accessible conformation of the enzyme that may be critical for catalytic function. Small N-terminal extensions to conventional hexapeptide para-nitroanilide substrates significantly increased catalytic activity of factor B, which was more selective for its cleavage site than trypsin. The new chromogenic assay enabled optimization of catalysis conditions, the profiling of different substrate sequences, and the development of the first reversible and competitive substrate-based inhibitor of factor B. The inhibitor was also shown to prevent in vitro formation of C3a from C3 by factor B, by synthetic and by natural C3 convertase of the alternative complement activation pathway, and to block formation of membrane attack complex. The availability of a reversible substrate-based inhibitor that could stabilize the active conformation of factor B, in conjunction with a pH-promoted higher processing activity, may offer a new avenue to obtain crystal structures of factor B and C3 convertase in an active conformation.  相似文献   

11.
Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4beta chain, which is responsible for the binding of C2. Since the CP and alternative pathway (AP) C3 convertases have many functional and structural similarities, we further investigated the effects of CRIT-H17 on the AP. The factor D-mediated cleavage of factor B (FB) was blocked by CRIT-H17. By ELISA and immunoblot, CRIT-H17 was shown to bind FB. CRIT-H17 had no decay activity on the C3bBb complex as compared to decay-accelerating factor. Binding of CRIT-H17 to FB did not interfere with the assembly of C3bB complex. In a haemolytic assay using C2-deficient serum, CRIT-H17 interfered with AP complement activation.  相似文献   

12.
Bb (Mr = 63,000) is the catalytic site-bearing subunit of the C3 convertase of the alternative complement pathway, C3b,Bb, which is dissociated from the complex upon decay of the enzyme. Because purified Bb induced certain leukocyte activities, we examined whether it expresses residual hemolytic or proteolytic activity. Hemolytic activity of Bb was tested by using Factor B- or Factor D-depleted normal human serum and rabbit or sheep erythrocytes. Proteolytic activity of Bb was assessed by using purified C3 or C5 as substrates and SDS-PAGE to detect protein cleavage. Bb expressed metal-dependent hemolytic activity that was approximately 100-fold lower than that of Factor B. This activity could be inhibited by Factor H and enhanced by properdin. Low but statistically significant binding of 125I-labeled Bb to C3b on erythrocytes was demonstrated. Monoclonal antibodies that bind to Bb but not to intact Factor B inhibited the Bb hemolytic activity. Purified Bb cleaved C3 to C3a and C3b, as evidenced by the appearance of the alpha'-chain of C3b. It also cleaved C5 to C5a and C5b when cobra venom factor was present in the reaction mixture. Metal ions were required for expression of proteolytic activity, and Ni supported the activity better than Mg. These results indicate that decayed Bb has residual C3 and C5 cleaving activity and hemolytic activity, expression of which appears to require its association with C3b, C3(H2O), or cobra venom factor. These observations may aid in explaining the mechanism of action of Bb on leukocytes.  相似文献   

13.
Complement, which bridges innate and adaptive immune responses as well as humoral and cell-mediated immunity, is antiviral. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a lytic cycle protein called KSHV complement control protein (KCP) that inhibits activation of the complement cascade. It does so by regulating C3 convertases, accelerating their decay, and acting as a cofactor for factor I degradation of C4b and C3b, two components of the C3 and C5 convertases. These complement regulatory activities require the short consensus repeat (SCR) motifs, of which KCP has four (SCRs 1 to 4). We found that in addition to KCP being expressed on the surfaces of experimentally infected endothelial cells, it is associated with the envelope of purified KSHV virions, potentially protecting them from complement-mediated immunity. Furthermore, recombinant KCP binds heparin, an analogue of the known KSHV cell attachment receptor heparan sulfate, facilitating infection. Treating virus with an anti-KCP monoclonal antibody (MAb), BSF8, inhibited KSHV infection of cells by 35%. Epitope mapping of MAb BSF8 revealed that it binds within SCR domains 1 and 2, also the region of the protein involved in heparin binding. This MAb strongly inhibited classical C3 convertase decay acceleration by KCP and cofactor activity for C4b cleavage but not C3b cleavage. Our data suggest similar topological requirements for cell binding by KSHV, heparin binding, and regulation of C4b-containing C3 convertases but not for factor I-mediated cleavage of C3b. Importantly, they suggest KCP confers at least two functions on the virion: cell binding with concomitant infection and immune evasion.  相似文献   

14.
The AP C3 convertase, C3bBb(Mg(2+)), is subject to irreversible dissociation (decay acceleration) by three proteins: DAF, CR1, and factor H. We have begun to map the factor B (fB) sites critical to these interactions. We generated a panel of fB mutations, focusing on the type A domain because it carries divalent cation and C3b-binding elements. C3bBb complexes were assembled with the mutants and subjected to decay acceleration. Two critical fB sites were identified with a structural model. 1) Several mutations centered at adjacent alpha helices 4 and 5 (Gln-335, Tyr-338, Ser-339, Asp-382) caused substantial resistance to DAF and CR1-mediated decay acceleration but not factor H. 2) Several mutations centered at the alpha 1 helix and adjoining loops (especially D254G) caused resistance to decay acceleration mediated by all three regulators and also increased C3b-binding affinity and C3bBb stability. In the simplest interpretation of these results, DAF and CR1 directly interact with C3bBb at alpha 4/5; factor H likely interacts at some other location, possibly on the C3b subunit. Mutations at the C3b.Bb interface interfere with the normal dissociation of C3b from Bb, whether it is spontaneous or promoted by DAF, CR1, or factor H.  相似文献   

15.
Ixodes scapularis salivary protein 20 (Salp20) is a member of the Ixodes scapularis anti-complement protein-like family of tick salivary proteins that inhibit the alternative complement pathway. In this study, we demonstrate that the target of Salp20 is properdin. Properdin is a natural, positive regulator of the alternative pathway that binds to the C3 convertase, stabilizing the molecule. Salp20 directly bound to and displaced properdin from the C3 convertase. Displacement of properdin accelerated the decay of the C3 convertase, leading to inhibition of the alternative pathway. S20NS is distinct from known decay accelerating factors, such as decay accelerating factor, complement receptor 1, and factor H, which directly interact with either C3b or cleaved factor B.  相似文献   

16.
C5 convertase of the alternative C pathway is a complex enzyme consisting of three C fragments--one molecule of a major fragment of factor B (Bb) and two molecules of a major fragment of C3 (C3b). Within this C3bBbC3b complex, the first C3b binds covalently to the target surface, and Bb, which bears a catalytic site, binds noncovalently to the first C3b. In the present investigation, we studied the nature of the convertase that is assembled on E surfaces and obtained evidence that the second C3b binds directly to the alpha'-chain of the first through an ester bond rather than to the target surface. Thus, the alternative pathway C5 convertase could be described as a trimolecular complex in which Bb binds noncovalently to a covalently linked C3b dimer. We also obtained evidence that not only the second C3b but also the first C3b participates in binding C5, that is, covalently-linked C3b dimer acts as a substrate-binding site. Because of this two-site binding, the convertase has a much higher affinity for C5 than the surrounding monomeric C3b molecules. Based on this evidence, a new model of the alternative pathway C5 convertase is proposed. Covalent association of two subunits and the bivalent binding of the substrate are then common properties of the alternative and classical pathway C5 convertases.  相似文献   

17.
18.
Cleavage of C5 by C5 convertase is the last enzymatic step in the complement activation cascade leading to the formation of the cytolytic proteolytically activated form of C5 (C5b)-9 complex. In the present study, we examined the effect of the density of C3b (the proteolytically activated form of C3) on the function of the noncatalytic subunit of natural surface-bound forms of the enzyme. A comparison of the kinetic parameters of C5 convertases assembled on three surfaces (zymosan, rabbit erythrocytes, and sheep erythrocytes) were similar and revealed that the average K:(m) decreased approximately 28-fold (5.2-0.18 microM) when the density of C3b was increased from approximately 18,000 to 400,000 C3b/cell. Very-high-affinity C5 convertases were generated when preformed C3 convertases were allowed to self amplify by giving them excess C3. These convertases exhibited K(m) from 0.016 to 0.074 microM, well below the normal plasma concentration of C5 in blood (0.37 microM). The results suggest that in serum convertases formed with monomeric C3b will be relatively inefficient in capturing C5 but will continue to cleave C3 opsonizing the cell surface for phagocytosis, whereas convertases formed with C3b-C3b complexes in areas of high C3b density will primarily cleave C5. The catalytic rate of these convertases approaches maximum velocity, thereby switching the enzyme from cleavage of C3 to cleavage of C5, and production of the cytolytic C5b-9 complex.  相似文献   

19.
Factor B is a zymogen that carries the catalytic site of the complement alternative pathway C3 convertase. During convertase assembly, factor B associates with C3b and Mg(2+) forming a pro-convertase C3bB(Mg(2+)) that is cleaved at a single factor B site by factor D. In free factor B, a pair of salt bridges binds the Arg(234) side chain to Glu(446) and to Glu(207), forming a double latch structure that sequesters the scissile bond (between Arg(234) and Lys(235)) and minimizes its unproductive cleavage. It is unknown how the double latch is released in the pro-convertase. Here, we introduce single amino acid substitutions into factor B that preclude one or both of the Arg(234) salt bridges, and we examine their impact on several different pro-convertase complexes. Our results indicate that loss of the Arg(234)-Glu(446) salt bridge partially stabilizes C3bB(Mg(2+)). Loss of the Arg(234)-Glu(207) salt bridge has lesser effects. We propose that when factor B first associates with C3b, it bears two intact Arg(234) salt bridges. The complex rapidly dissociates unless the Arg(234)-Glu(446) salt bridge is released whereupon conformational changes occur that activate the metal ion-dependent adhesion site and partially stabilize the complex. The remaining salt bridge is then released, exposing the scissile bond and permitting factor D cleavage.  相似文献   

20.
Alternative complement pathway C3 convertase formation involves the cleavage of C3b-associated factor B into fragments Ba and Bb. Whereas Bb, in complex with C3b, has proteolytic specificity toward native C3, the function of the Ba moiety in the formation and/or decay of alternative complement pathway C3 convertase is uncertain. Therefore, we have examined the effect of purified Ba fragment on both fluid-phase and surface-bound enzymatic activity and showed that whereas Ba could inhibit the rate of C3 convertase formation, the rate of intrinsic decay remained unaffected. A specific, metal ion-independent interaction between Ba and C3b was subsequently demonstrated by use of the cross-linking reagent dithiobis(succinimidyl propionate). When cell-associated 125I-B was activated by D, the dissociation of Bb fragment displayed simple first-order kinetics with a half-time of 2.4 min, this value being in reasonable agreement with the hemolytically determined decay rate of 1.8 min. In contrast, most of the Ba fragment undergoes rapid dissociation, but there is also evidence to suggest the establishment of a new equilibrium due to the ability of Ba to rebind to C3b. Cumulatively, these data are consistent with a model in which the attachment of intact B to C3b is mediated by two points of contact, one being in the Ba domain and the other in the Bb domain. Due to avidity effects, each of these interactions could be of relatively low intrinsic affinity, and the characteristic unidirectionality of alternative complement pathway C3 convertase decay may simply result from the low intrinsic association of "univalent" Bb for the C3b subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号