首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the susceptibility of fibrils formed from fetal bovine skin type III collagen to proteolytic enzymes known to cleave within the helical portion of the molecule (vertebrate and microbial collagenase, polymorphonuclear elastase, trypsin, thermolysin) and to two general proteases of broad specificity (plasmin, Pronase). Fibrils reconstituted from neutral salt solutions, at 35 degrees C, were highly resistant to nonspecific proteolysis by general proteases such as polymorphonuclear elastase, trypsin, and thermolysin but were rapidly dissolved by bacterial and vertebrate collagenases at rates of 12-45 mol X mol-1 X h-1. In solution, type III collagen was readily cleaved by each of the proteases (with the exception of plasmin), as well as by the true collagenases, although at different rates. Turnover numbers determined by viscometry at 35 degrees C were: human collagenase, approximately equal to 1500 h-1; microbial (clostridial) collagenase, approximately equal to 100 h-1; and general proteases, 23-52 h-1. In addition it was shown that pronase cleaves type III collagen in solution at 22 degrees C by attacking the same Arg-Gly bond in the alpha 1(III) chain as trypsin. However, like other proteases, Pronase was rather ineffective against fibrillar forms of type III collagen. It was also shown that transition of type III collagen as well as type I collagen to the fibrillar form resulted in a significant gain of triple helical thermostability as evidenced by a 6.8 degrees C increase in denaturation temperature (Tm = 40.2 degrees C in solution; Tm = 47.0 degrees C in fibrils).  相似文献   

2.
A microassay for proteases using succinylcasein as a substrate.   总被引:1,自引:0,他引:1  
A photometric assay for proteases has been developed. A chemically modified casein whose amino groups were succinylated was used as a substrate. After incubation with trypsin, chymotrypsin, thermolysin, and subtilisin, the extent of hydrolysis of the substrate was determined with trinitrobenzene sulfonate (TNBS). The whole procedure of the assay was performed in the microtiter plate wells and the increase in the absorbance resulting from the reaction between TNBS and newly formed amino groups in the substrate was able to be determined with a high sensitivity by a microtiter plate reader, enabling the simultaneous measurement of a number of samples. Application of this method to the measurement of proteolytic activity contained in the protein extract of Tapes philippinarum is demonstrated.  相似文献   

3.
A bioluminescent general protease assay was developed using a combination of five luminogenic peptide substrates. The peptide-conjugated luciferin substrates were combined with luciferase to form a homogeneous, coupled-enzyme assay. This single-reagent format minimized backgrounds, gave stable signals, and reached peak sensitivity within 30 min. The bioluminescent assay was used to detect multiple proteases representing serine, cysteine, and metalloproteinase classes. The range of proteases detected was broader and the sensitivity greater, when compared with a standard fluorescent assay based on cleavage of the whole protein substrate casein. Fifteen of twenty proteases tested had signal-to-background ratios >10 with the bioluminescent method, compared with only seven proteases with the fluorescent approach. The bioluminescent assay also achieved lower detection limits (≤100 pg) than fluorescent methods. During protein purification processes, especially for therapeutic proteins, even trace levels of contamination can impact the protein's stability and activity. This sensitive, bioluminescent, protease assay should be useful for applications in which contaminating proteases are detrimental and protein purity is essential.  相似文献   

4.
A sensitive nonisotopic solution hybridization assay for detection of RNA is described and characterized using a pSP65 plasmid model system. The assay procedure is based on a hybridization reaction in solution between a biotinylated DNA probe and a target RNA. The biotin-labeled hybrids are captured on a microtiter plate coated with an antibody to biotin. Bound DNA-RNA hybrids are detected by an immunoreaction with an enzyme-labeled monoclonal antibody specifically directed against DNA-RNA heteropolymers and the hybrids are quantitatively measured with the addition of a fluorogenic substrate. Optimal conditions under which to perform the assay were hybridization time, 1000 min; temperature, 75 degrees C; probe concentration, 0.2 microgram/ml; extent of probe biotinylation, 6.7%; buffer stringency, 2x SSC. A bisulfite-modified DNA probe was compared to nick-translated probes synthesized with reporter groups of different lengths (bio-11-dUTP or bio-19-dUTP). All probes could detect 10 pg/ml of target RNA. The presence of nonhomologous DNA or RNA sequences reduced the sensitivity of RNA detection by one half-log to 32 pg/ml (1.6 pg/assay).  相似文献   

5.
Conjugates have been prepared from glutaraldehyde-activated linear polyacrylamide and bovine serum albumin, casein, or gelatin. Incorporation of these conjugates into sodium dodecyl sulfate-polyacrylamide gels has provided a simple and general method for the analysis of proteases following electrophoresis. The conjugates did not migrate during electrophoresis or development, but remained susceptible to proteolytic action following regeneration of enzyme activity. The sensitivity of this procedure was such that 2 pg of trypsin or chymotrypsin, 39 ng of elastase, and 2 ng of thermolysin could be detected. Results obtained with trypsin and chymotrypsin are 5 to 10 times more sensitive than previously reported techniques for protease detection following electrophoresis.  相似文献   

6.
A novel glycation procedure, in vacuo glycation, was used to attach glucose covalently to the lysine residues of trypsin and chymotrypsin. Glycated trypsin and glycated chymotrypsin have greatly increased thermostability compared to the native enzymes. For example, glycated bovine trypsin, incubated at 50 degrees C and pH 8.0 for 3 h, retained more than 50% of its original activity whereas the native enzyme was inactivated under the same conditions. Similarly, after incubation at 50 degrees C and pH 8.0, glycated bovine chymotrypsin retained 45% of its original activity and the native enzyme was inactivated. Glycated porcine trypsin is exceptionally thermostable and could be used to digest native ribonuclease at 70 degrees C without the need for prior denaturation. The apparent increase in the thermal stability of the glycated proteins observed in activity measurements is also reflected by an increase in the T(m) values determined with differential scanning calorimetry (DSC) and circular dichroism (CD). The glycation does not alter the activity or specificity of these enzymes.  相似文献   

7.
Schizolobium parahyba chymotrypsin inhibitor (SPCI) was completely purified as a single polypeptide chain with two disulfide bonds, by TCA precipitation and ion exchange chromatography. This purification method is faster and more efficient than that previously reported: SPCI is stable from pH 2 to 12 at 25 degrees C, and is highly specific for chymotrypsin at pH 7-12. It weakly inhibits elastase and has no significant inhibitory effect against trypsin and alpha-amylase. SPCI is a thermostable protein and resists thermolysin digestion up to 70 degrees C.  相似文献   

8.
A novel, thermostable adaptation of the coupled-enzyme assay for monitoring glucose concentrations was developed for an optimal temperature of 85 degrees C. This is the first report of a thermostable glucostat from a marine hyperthermophile. The continuous assay, using glucokinase (Glk) and glucose-6-phosphate dehydrogenase (Gpd) from Thermotoga maritima, demonstrated robust activity over a range of temperatures (75-90 degrees C) and pH values (6.8- 8.5). Purified glucokinase had a monomeric molecular mass of 33.8kDa while that of glucose-6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase) was 57.5kDa. The high-temperature assay provided a method for directly assaying the activity of another hyperthermophilic enzyme, 1,4-beta-D-glucan glucohydrolase (GghA) from Thermotoga neapolitana. To provide a benchmark for protein-engineering experiments involving GghA, a three-enzyme continuous assay (performed at 85 degrees C), linking wild-type GghA, Glk, and Gpd, measured glucose produced from GghA's hydrolysis of cellobiose, one of GghA's secondary substrates. The assay established the kinetic behavior of wild-type GghA toward cellobiose and was used to screen for changes in the catalytic efficiency of variant GghA(s) induced by random mutagenesis. The assay's development will allow high-throughput screening of other thermostable glucose-producing enzymes, including those applicable to commercial biomass conversion.  相似文献   

9.
Forty homolog-scanning (double-reciprocal-crossover) mutant proteins of two Bacillus thuringiensis delta-endotoxin genes (cryIAa and cryIAc) were examined for potential structural alterations by a series of proteolytic assays. Three groups of mutants could be identified. Group 1, consisting of 13 mutants, showed no delta-endotoxin present during overexpression conditions in Escherichia coli (48 h at 37 degrees C, with a ptac promoter). These mutants produced full-sized delta-endotoxin detectable by polyacrylamide gel electrophoresis with Coomassie blue staining or Western immunoanalysis after 24 h of growth but not after 48 h, suggesting sensitivity to intracellular proteases. Group 2 consisted of 13 mutants that produced stable delta-endotoxins that were completely digested by 2% bovine trypsin. In contrast, native delta-endotoxin produces a 65,000-Da trypsin-resistant peptide, which is the active toxin. Group 3 mutants expressed delta-endotoxin and trypsin-stable toxins, similar to the wild type. In this study, 12 group 3 mutant toxins were compared with wild type toxins by thermolysin digestion at a range of temperatures. The two wild-type toxins exhibited significant differences in thermolysin digestion midpoints. Among the group 3 mutants, most possessed significantly different protein stabilities relative to their parental toxins. Two of the group 3 mutants were observed to have exchanged the thermolysin sensitivity properties of the parental toxins.  相似文献   

10.
The sensitivity and utility of proteinase assays employing fluorescamine, a compound which reacts with primary amines to form a fluorescent adduct, was assessed. As little as 1 ng of purified trypsin or clostridiopeptidase A could be detected within 3 h of incubation at 37 degrees C, using casein or gelatin as substrates. Increasing the incubation period to 18 h permitted the detection of 250 pg of each enzyme. When gelled collagen was utilized as substrate, the sensitivity to clostridiopeptidase A was reduced to 2.5 ng at 3 h and 500 pg at 18 h. The techniques could be used to measure the gelatinase, caseinase, and collagenase activities of culture media conditioned by synovial tissue. The main disadvantage of this assay is its susceptibility to interference by compounds which fluoresce or quench. This, in turn, necessitates additional blanks, which may render the assay tedious.  相似文献   

11.
Proteolytic activity was detected, using a sensitive radial diffusion plate assay, in the plasma membrane fractions of corn (Zea mays L.) roots and from roots of several other plant species. The proteases could be effectively inhibited in corn with phenylmethane sulfonyl fluoride or chymostatin. Protease activity of oat roots, however, was not significantly reduced by these inhibitors. The results of diffusion plate assay were confirmed with the less sensitive azocasein assay using crude cell homogenates. Chymostatin and phenylmethane sulfonyl fluoride were effective in preventing protease degradation of polypeptides as revealed by electrophoresis. The diffusion plate assay uses a permanent support for a 0.75 millimeter thick agarose slab containing 200 micrograms per milliliter casein. By staining the fixed and dried gel with Coomassie blue R-250, proteolytic activity was visualized as a cleared area around the sample well with a detection limit of about 0.3 nanograms trypsin. The diffusion plate assay should prove useful for screening inhibitors of proteases where limited amounts of material are available, such as with plant cell fractions or highly purified proteins.  相似文献   

12.
Thermostable protease is very effective to improve the industrial processes in many fields. Two thermostable extracellular proteases from the culture supernatant of the thermophilic fungus Chaetomium thermophilum were purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, and PhenylSepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular mass of the two purified enzymes was estimated to be 33 kDa and 63 kDa, respectively. The two proteases were found to be inhibited by PMSF, but not by iodoacetamide and EDTA. The 33 kDa protease (PRO33) exhibited maximal activity at pH 10.0 and the 63 kDa protease (PRO63) at pH 5.0. The optimum temperature for the two proteases was 65 degrees C. The PRO33 had a K(m) value of 6.6 mM and a V(max) value of 10.31 micromol/l/min, and PRO63 17.6 mM and 9.08 micromol/l/min, with casein as substrate. They were thermostable at 60 degrees C. The protease activity of PRO33 and PRO63 remained at 67.2% and 17.31%, respectively, after incubation at 70 degrees C for 1 h. The thermal stability of the two enzymes was significantly enhanced by Ca2+. The residual activity of PRO33 and PRO63 at 70 degrees C after 60 min was approximately 88.59% and 39.2%, respectively, when kept in the buffer containing Ca2+. These properties make them applicable for many biotechnological purposes.  相似文献   

13.
A simple kinetic method for human urinary kallikrein determination is proposed. In this assay, the release of p-nitroaniline from the chromogenic substrate S-2266 at 37 degrees C and pH 8.2 is followed spectrophotometrically at 405 nm. The delta A/5 min (0-5 min) interval was chosen. This assay was shown to have good sensitivity since enzyme concentrations as low as 0.00125 KU/ml could be measured. The use of dialyzed urines minimizes the interferences associated with high urinary salt concentration. Because of its precision and reproducibility, this kinetic assay may be proposed in clinical investigation.  相似文献   

14.
The COOH-terminal cyanogen bromide fragment 206-316 of thermolysin has been shown to possess protein domain characteristics that are able to refold into a stable native-like structure (Fontana et al., 1982). We now report the results of limited proteolysis of this fragment with the aim of identifying the minimum size of a COOH-terminal fragment of thermolysin that is able to fold by itself. Proteolysis with subtilisin, chymotrypsin, thermolysin and trypsin allowed us to isolate to homogeneity eight different subfragments, which can be grouped in two sets of peptides, i.e. (218-222)-316 and (252-255)-316. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultraviolet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. In addition, even the smallest fragment isolated (sequence 255-316) shows co-operative and reversible unfolding transitions mediated by heat (tm 65 degrees C) and guanidine hydrochloride (midpoint transition at 2.5 M denaturant), as often observed with globular proteins. From the kinetics of the proteolytic digestion and analysis of the isolated subfragments, it is concluded that proteases lead to a stepwise degradation of fragment 206-316 from its NH2-terminal region, leading to the highly helical fragment (252-255)-316, quite resistant to further proteolytic digestion. The results of this study provide evidence that it is possible to isolate stable supersecondary structures of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain of thermolysin.  相似文献   

15.
An o-phthalaldehyde spectrophotometric assay for proteinases   总被引:3,自引:0,他引:3  
A rapid and convenient spectrophotometric assay has been devised to measure proteolysis. The assay is based on the reaction of o-phthalaldehyde (OPA) and 2-mercaptoethanol with amino groups released during proteolysis of a protein substrate. The reaction is specific for primary amines in amino acids, peptides, and proteins, approaches completion within 1 to 2 min at 25 degrees C (half-times of approx 10-15 s), and requires no preliminary heating or separation of the hydrolyzed products from the undegraded protein substrate prior to performing the assay. The OPA assay was relatively as successful as a 2,4,6-trinitrobenzenesulfonic acid (TNBS) procedure in predicting the extent of hydrolysis of a protein substrate. The utility of the OPA method was demonstrated by measuring the degree of proteolytic degradation caused by trypsin, subtilisin, Pronase, and chymotrypsin of various soluble protein substrates. Ethanethiol (instead of 2-mercaptoethanol) or 50% of dimethyl sulfoxide can be included in the assay solution to stabilize certain OPA-amine products. The present method approaches the sensitivity of ninhydrin and TNBS procedures, is more convenient and rapid, and could substitute for these reagents in most assay systems.  相似文献   

16.
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.  相似文献   

17.
Bovine pancreatic trypsin was chemically modified by a beta-cyclodextrin-carboxymethylcellulose polymer using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The conjugate retained 110% and 95% of the initial esterolytic and proteolytic activity, respectively, and contained about 2 mol of polymer per mol of trypsin. The optimum temperature for trypsin was increased to 8 degrees C after conjugation. The thermostability of the enzyme was increased to about 16 degrees C after modification. The conjugate prepared was also more stable against thermal incubation at different temperatures ranging from 45 degrees C to 60 degrees C. In comparison with native trypsin, the polymer-enzyme complex was more resistant to autolytic degradation at pH 9.0, retaining about 65% of the initial activity after 3h incubation. In addition, modification protected trypsin against denaturation in the presence of sodium dodecylsulfate.  相似文献   

18.
We describe a simple endpoint method for the determination of N-acetyl-beta-D-glucosaminidase (NAGase; EC 3.2.1.30). NAGase uses a fluorogenic substrate, 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide, at pH 4.6, liberating the fluorescent 4-methylumbelliferone. The method is reproducible and fast both at room temperature and at 37 degrees C. The procedure developed can be used, e.g., in the diagnosis of bovine subclinical mastitis, where elevated NAGase activities are found in raw milk samples. The assay procedure has a high capacity and high sensitivity and several hundred milk samples can be screened per hour using 96-well microtiter plates and an automated fluorescence reader. In addition to its use in mastitis diagnosis, the assay can be used in the diagnosis of some diseases of human origin.  相似文献   

19.
Several proteases, i.e., pronase, a mixture of trypsin and chymotrypsin, and thermolysin were screened as potential surface probes of isolated intact pea (Pisum sativum var Laxton's Progress No. 9) chloroplasts. Of these, only thermolysin met the criteria of a suitable probe. Thermolysin destroyed outer envelope polypeptides, but did not affect inner envelope polypeptides, envelope permeability properties or such chloroplast activities as metabolite transport and O2 evolution.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1687-1694
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号