首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究凤仙花近缘种植物的细胞学和微形态学方面的亲缘关系,该文选取荔波凤仙花(Impatiens liboensis)及近缘种赤水凤仙花(I.chishuiensis)和管茎凤仙花(I.tubulosa)的根尖和叶表皮为实验材料,采用体细胞染色体常规压片法和叶表皮光学显微镜观察法对凤仙花近缘种植物进行染色体及叶表皮特征研...  相似文献   

2.
We studied the speciose butterfly genus Erebia by reconstructing its phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification for its lineages and employed a biogeographical analysis in order to reconstruct its evolutionary history. DNA sequence data from one mitochondrial gene and three nuclear genes were analyzed for a total of 74 species in Erebia. The estimated dates of origin and diversification for clades, in combination with a biogeographical analysis, suggest that the genus originated in Asian Russia and started its diversification process around 23 Myr. An important event was the dispersal of a lineage from Asia to Western Europe between 23 and 17 Myr, which allowed the radiation of most of species in the genus. The diversification pattern is consistent with a model of diversity limited by clade richness, which implies an early rapid diversification followed by deceleration due to a decrease in speciation. We argue that these characteristics of the evolutionary history of Erebia are consistent with a density‐dependent scenario, with species radiation limited by filling of niche space and reduced resources. We found that the Boeberia parmenio appears strongly supported in the genus Erebia and therefore we place Boeberia Prout, 1901 as a junior synonym of Erebia Dalman, 1816 ( syn. nov. ).  相似文献   

3.
采用扫描电镜观察了中国四川雅安地区13种凤仙花属植物的花粉形态,并对其花粉形态进行了主成分分析和聚类分析,基于孢粉学和SRAP聚类结果的比较,讨论不同孢粉学特征对分类结果的影响。结果显示:(1)雅安地区13种凤仙花属植物花粉粒均为中等大小,花粉粒形状从超扁到扁球形变化,花粉粒极面观形状从矩形和椭圆形到四边形、圆形、三角型变化,且只有湖北凤仙、峨眉凤仙和匙叶凤仙是三沟花粉粒,其余种均为四沟花粉粒;外壁纹饰仅扭萼凤仙和齿萼凤仙为细小网状,其余均为网状纹饰。(2)依据不同指标进行的孢粉学聚类均将13种凤仙花属植物划分为3个类群,而SRAP聚类结果则将13种凤仙花属植物划分为5个类群;不同孢粉学聚类结果的相似率只有30.77%。(3)孢粉学聚类并未与分子聚类显示严格的对应关系,以花粉大小和形状、外壁纹饰为指标进行的孢粉学分类与SRAP分类的相似率最高(69.23%)。研究认为,选择不同的花粉形态特征作指标对分类的准确性影响较大,花粉大小和形状、外壁纹饰这2个指标对凤仙花属植物分类具有意义,而萌发沟的特征则很难作为分类的依据,花粉形态特征在分类上有局限性;进行该属植物孢粉学分类需要选择有价值的分类指标,并结合形态学、分子生物学等综合研究。  相似文献   

4.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

5.
Macaronesian archipelagos stand apart from other oceanic islands reputed as laboratories for the study of evolution by their proximity to the mainland, lack of subsidence, and steep ecological gradients. The genus Pholcus Walckenaer, 1805, commonly known as daddy-long-leg spiders, is one of the most speciose arthropod groups in the region, with 25 endemic species. In the present study, we use information from four mitochondrial genes, along with morphological data, to examine the phylogenetic relationships and diversification patterns of the genus in the region. Phylogenetic analyses support monophyly of Macaronesian Pholcus including the Moroccan species Pholcus vachoni and hence a single colonization event in the archipelagos. Madeira colonizers most likely originated from the Canaries, and a back-colonization of the nearby mainland receives further support. Estimated lineage divergence times suggest a long-time presence of Pholcus in the region, but also reveal that most present-day species are the result of recent, and probably rapid, speciation events. Diagnostic characters among Macaronesian Pholcus are confined to structures involved in copulation. Coupled with the extremely high diversification rate, the highest recorded for spiders, these copulatory characters suggest that sexual selection has played a key role in the local diversification of Pholcus in Macaronesia.  相似文献   

6.
Extant clades may differ greatly in their species richness, suggesting differential rates of species diversification. Based on phylogenetic trees, it is possible to identify potential correlates of such differences. Here, we examine species diversification in a clade of 82 tropical African forest butterfly species (Cymothoe), together with its monotypic sister genus Harma. Our aim was to test whether the diversification of the HarmaCymothoe clade correlates with end‐Miocene global cooling and desiccation, or with Pleistocene habitat range oscillations, both postulated to have led to habitat fragmentation. We first generated a species‐level phylogenetic tree for Harma and Cymothoe, calibrated within an absolute time scale, and then identified temporal and phylogenetic shifts in species diversification. Finally, we assessed correlations between species diversification and reconstructed global temperatures. Results show that, after the divergence of Harma and Cymothoe in the Miocene (15 Mya), net species diversification was low during the first 7 Myr. Coinciding with the onset of diversification of Cymothoe around 7.5 Mya, there was a sharp and significant increase in diversification rate, suggesting a rapid radiation, and correlating with a reconstructed period of global cooling and desiccation in the late Miocene, rather than with Pleistocene oscillations. Our estimated age of 4 Myr for a clade of montane species corresponds well with the uplift of the Eastern Arc Mountains where they occur. We conclude that forest fragmentation caused by changing climate in the late Miocene as well as the Eastern Arc Mountain uplift are both likely to have promoted species diversification in the Harma–Cymothoe clade. Cymothoe colonized Madagascar much later than most other insect lineages and, consequently, had less time available for diversification on the island. We consider the diversification of Cymothoe to be a special case compared with other butterfly clades studied so far, both in terms of its abrupt diversification rate increase and its recent occurrence (7 Myr). It is clear that larval host plant shift(s) cannot explain the difference in diversification between Cymothoe and Harma; however, such a shift(s) may have triggered differential diversification rates within Cymothoe. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●● , ●●–●●.  相似文献   

7.
The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold‐temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex‐dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb‐Seq framework, and a sampling of two‐thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out‐of‐Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.  相似文献   

8.
Frullania Raddi is an extant genus of liverworts (Bryophytes) widespread around the world. It belongs to the family Frullaniaceae Lorch., with a large number of species distributed into several subgenera, sections and subsections according with different morphological classifications. As shown in previous studies, most Frullania sub-generic classifications are supported by molecular data, indicating that morphological characters appear well suitable to discriminate species. However, deep among-clade relationships remain unclear, probably due to the rapid diversification of main clades, paralleling other plant lineages. In this study, we reconstruct Frullania phylogeny based on available molecular data used in previous studies, and we present time estimates for the origin of its main branches. Results supported the monophyly of most subgenera as demonstrated in previous studies and supported a rapid diversification of these main lineages. Time estimates under a relaxed molecular clock and with integrated fossil evidence and nucleotide mutation rates further suggested a Jurassic origin of the genus and a rapid diversification during Palaeogene and Neogene. This may have been influenced by geographical and climate changes during these periods as predicted for most leafy liverworts.  相似文献   

9.
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.  相似文献   

10.
Following a taxonomic revision of Nectandra, a genus of about 114 species of neotropical trees, character gradients are compared against geographical distribution, habitat preferences, and reproductive phenology of individual species, with the aim of reconstructing the spatial and temporal diversification of the genus. It is shown that Nectandra, together with Ocotea, Persea, and other genera of the Lauraceae, originated from a northern hemisphere matrix that immigrated into South America, perhaps as late as after the closure of the Central American land bridge in the Pliocene. The dramatic diversification of the genus within South America was facilitated by its ornithochorous dispersal system, implying ample processes of allopatric speciation. At present, speciation seems to take place preferably by processes of ecotypic (mostly edaphic) specialization, by which widely distributed, ecologically polymorphic species give rise to swarms of ecologically narrowly specialized satellite species.  相似文献   

11.
The ancient and cosmopolitan lycophyte genus Selaginella has living representatives around the world, but their historical biogeography has not been assessed with modern methods. We estimated a time‐calibrated phylogeny using DNA marker regions rbcL and ITS1‐5.8S‐ITS2 from 200 species. Node density analyses revealed that Selaginellaceae has significantly older median and mean node ages than other putative “ancient” families. We used statistical model comparison to assess different biogeographical models on our dated tree, and to estimate ancestral ranges. These revealed that Selaginella originated on Euramerica around 383 Ma in the Devonian period, while its peak diversification began with the formation of Pangea. The divergence of the two main species‐rich Selaginella lineages occurred approximately 318 Ma on the supercontinent. The major divergences within these main lineages of Selaginella took place in the Late Permian and Early Triassic, along with lineages highly adapted for xeric habitats on Pangea.  相似文献   

12.
Polystichum, one of the largest genera of ferns, occurs worldwide with the greatest diversity in southwest China and adjacent regions. Although there have been studies of Chinese Polystichum on its traditional classification, geographic distributions, and even a few on its molecular systematics, its relationships to other species outside China remain little known. Here, we investigated the phylogeny and biogeography of the Polystichum species from China and Australasia. The evolutionary relationships among 42 Polystichum species found in China (29 taxa) and Australasia (13 taxa) were inferred from phylogenetic analyses of two chloroplast DNA sequence data sets: rps4-trnS and trnL-F intergenic spacers. The divergence time between Chinese and Australasian Polystichum was estimated. The results indicated that the Australasian species comprise a monophyletic group that is nested within the Chinese diversity, and that the New Zealand species are likewise a monophyletic group nested within the Australasian species. The divergence time estimates suggested that Chinese Polystichum migrated into Australasia from around 40 Ma ago, and from there to New Zealand from about 14 Ma. The diversification of the New Zealand Polystichum species began about 10 Ma. These results indicated that Polystichum probably originated in eastern Asia and migrated into Australasia: first into Australia and then into New Zealand.  相似文献   

13.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

14.
Initial molecular phylogenetic studies established the monophylly of the large genus Croton (Euphorbiaceae s.s.) and suggested that the group originated in the New World. A denser and more targeted sampling of Croton species points to a South American origin for the genus. The nuclear and chloroplast genomes indicate a different rooting for the phylogeny of Croton. Although we favor the rooting indicated by the chloroplast data our conclusions are also consistent with the topology inferred from the nuclear data. The satellite genera Cubacroton and Moacroton are embedded within Croton. These two genera are synonimized into Croton and a new subgenus, Croton subgenus Moacroton, is circumscribed to include them and their allied Croton species. Croton subgenus Moacroton is morphologically characterized by a primarily lepidote indumentum, bifid or simple styles, and pistillate flowers with sepals that are connate at the base. This newly circumscribed subgenus is found from North America to South America, and in contrast to the majority of Croton species most of its members are found in mesic habitats. The group is most diverse in the greater Caribbean basin. A molecular clock was calibrated to the phylogeny using the available Euphorbiaceae fossils. The timing and pattern of diversification of Croton is consistent with both the GAARlandia and Laurasian migration hypotheses. A single species, Croton poecilanthus from Puerto Rico, is placed incongruently by its nuclear and chloroplast genomes. The possibility of this species being of hybrid origin is discussed.   相似文献   

15.
Patterns seen in other Australian flora have led to hypotheses that early Miocene shifts in climate drove rapid radiation of major taxonomic groups such as Eucalyptus. Little is known about absolute dates and rates for Australian monocots, particularly grasses. I tested this early Miocene radiation hypothesis for Australian grasses using a calibrated phylogeny of the endemic stipoid genus Austrostipa and an analysis of diversification rates. The phylogeny was developed from a Bayesian likelihood analysis of the nuclear internal transcribed spacers region, and three calibration points were set based on fossil evidence. The results indicate that the genus arose in the early Miocene and underwent a species radiation, but the rate of diversification was not rapid compared to the current rate or to those of other taxa. Following an 8 million year period of fast molecular evolution but no taxonomic radiation, diversification rates have been constant for the past 15 million years. Comparable measures such as the gamma statistic can be used across taxa to make general conclusions about evolutionary rate constancy.  相似文献   

16.
Impatiens L. is taxonomically a complicated genus that necessitates fresh characterization to resolve its taxonomy. This study therefore aimed at ascertaining micro-morphological characters in the foliar epidermis of Impatiens. For this purpose, we gathered twelve taxa (10 species and 2 subspecies) mostly from the northern regions of Pakistan and studied qualitative and quantitative characters depicting variation in epidermal cells, stomata, and trichomes on both surfaces. Multicellular, uniseriate trichomes were observed only in I. balsamina L., and raphides in I. balfourii Hook. f. and I. thomsonii Hook. f. while stomata were exclusively anomocytic in all species. Morphological variation in the foliar epidermal characters and their diagnostic value has been depicted by constructing a taxonomic key to all taxa. The study revealed that although foliar epidermal characters in Impatiens did not desirably assort taxa on the basis of structural topographies, yet demonstrated adequate variation distinguishing the Pakistani taxa.  相似文献   

17.
Abstract: Pleurotomaria species from lower Bajocian (Middle Jurassic) sediments of south‐western Luxembourg housed in the National Natural History Museum of Luxembourg are described. Seven species are recognized, one of which is new, Pleurotomaria faberi sp. nov. A more detailed definition of the diagnostic characters of the genus is proposed and the morphological continuity between Talantodiscus and Pleurotomaria is demonstrated, suggesting that the former cannot be considered as a distinct taxon. The palaeoecology, evolution and palaeobiogeographical history of Pleurotomaria are outlined. Pleurotomaria presumably first appeared in late Middle Triassic of New Zealand where it underwent a relative diversification up to the Hettangian (Early Jurassic). From early Hettangian, most of its evolutionary history took place in Europe and western Tethys. In the European epicontinental seas, Pleurotomaria experienced two important radiations. The first occurred in the Early Jurassic, with a peak in the late Pliensbachian, and was marked by an expansion of the distribution to the central part of western Tethys. After a collapse in species diversity, probably related to the early Toarcian anoxic event, a second radiation occurred. This culminated in the early Bajocian and was mainly confined in a region encompassing southern England, Paris Basin and southern Germany. Low‐spired species, formerly attributed to Talantodiscus, probably originated independently and iteratively during the history of Pleurotomaria. The facies and associated benthic faunas suggest that Pleurotomaria probably lived on shallow soft bottoms composed of mixed calcareous–siliciclastic sediments. The two main Early Jurassic and early Middle Jurassic radiations of the genus took place in these environments. Records of the genus in Jurassic carbonate platform deposits are very few and concern mainly post‐Bajocian species.  相似文献   

18.
Euphrasia includes perennial or annual green parasitic plants, and has a disjunct bipolar distribution except for one transtropical connection across the high mountains of Oceania. The disjunction is coupled with strikingly contrasting patterns of morphological diversity between the southern and northern hemispheres, making it an exciting model to study processes of evolutionary diversification which shaped present floras. We inferred the relationships among 51 species representing 14 of the 15 sections of the genus based on nrDNA ITS and cpDNA trnL intron, trnL-trnF and atpB-rbcL intergenic spacers. Maximum parsimony and Bayesian inference support monophyly of the genus and of several intrageneric groups characterized by morphology, ploidy level, and geographic range. Molecular phylogenetic dating using Bayesian “relaxed” clock methods suggests that the earliest Euphrasia radiations occurred minimum 11–8 Mya with bipolarity being achieved 7–5 Mya. Biogeographic analyses using explicit model-based approach inferred Eurasia as an ancestral area for the genus. The most parsimonious reconstruction found by a dispersal-vicariance analysis requires 17 dispersals to account for the current biogeographic pattern and supports Eurasian origin for Euphrasia. Both long-distance dispersal and across land vicariance can be invoked to explain the diversification in the genus, which experienced rapid radiations driven by new ecological opportunities of the late Pliocene and Pleistocene but also retained a set of local endemic or relict species of an earlier origin.  相似文献   

19.
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega‐phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species‐rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the ‘generalized diversification rate’ hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.  相似文献   

20.
Chromosomal studies ofMedicago lesinsii (n = 8) and its close relativeM. murex (n = 7) have led to the competing hypotheses that the latter is derived directly from the former, or that both originated from a common ancestor. In contrast to the relatively variableM. murex, M. lesinsii proved to be almost uniform isozymically, except that most populations of Greece differed by one allele from plants of the remainder of the range. This Greek variant ofM. lesinsii was indistinguishable from one of the isozyme variants ofM. murex. The greater level of allozyme variation inM. murex was consistent with its greater ecological amplitude and competitive ability. Also, this suggests thatM. murex is unlikely to have originated directly from the less variableM. lesinsii. The data suggest that either both species originated from a common ancestor, or that the n = 8 species evolved from the n = 7 species, a mode of chromosome evolution not previously hypothesized for the genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号