首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basallaminae of Schwanncell ensheathed axons and "naked" axons respectively have contact areas between the endformation of the peripheral vegetative nervious system and gr?undsubstance. The latter, however, merges directly in the glycocalyces of connective tissue cells and organ cells. These cells may be related to one another (i.e. microvilli, cell processes, glycocalyces etc.) or will form "neuroeffector areas" together with pre- and terminal peripheral vegetative nerve fibers. On the other hand axon swellings might discharge their neurotransmitter substances into the ground substance in such way the neighbouring cells might be influenced ("synapse on distance"). Mast cells may act as regulators of the relationships in the groundsubstance. This because of the connections of mast cells with the peripheral nervous system and consequently with the CNS and the hormonale system. Thus the vegetative periphery as a whole would form a functional unit.  相似文献   

2.
Submicroscopic rearrangements are described. They serve as the bases of rapid (up to 20 min) changes in the form of the common frog neurula explants: formation of filamentous layer under "naked" surface, appearance of lobopodia on "naked" surface, their "flow", cell polarization and submersion. In all these processes an active part appears to be played by microtubules and microfilaments the bundles of which are always oriented along the long axes of active cells or the directions of passive mechanical tensions. In the cells which are not yet polarized the microtubules form under the surface adjacent to the already polarized cell. This may be considered as one of the chains of cooperative cell polarization.  相似文献   

3.

Background

Gastrulation is a key transition in embryogenesis; it requires self-organized cellular coordination, which has to be both robust to allow efficient development and plastic to provide adaptability. Despite the conservation of gastrulation as a key event in Metazoan embryogenesis, the morphogenetic mechanisms of self-organization (how global order or coordination can arise from local interactions) are poorly understood.

Results

We report a modular structure of cell internalization in Caenorhabditis elegans gastrulation that reveals mechanisms of self-organization. Cells that internalize during gastrulation show apical contractile flows, which are correlated with centripetal extensions from surrounding cells. These extensions converge to seal over the internalizing cells in the form of rosettes. This process represents a distinct mode of monolayer remodeling, with gradual extrusion of the internalizing cells and simultaneous tissue closure without an actin purse-string. We further report that this self-organizing module can adapt to severe topological alterations, providing evidence of scalability and plasticity of actomyosin-based patterning. Finally, we show that globally, the surface cell layer undergoes coplanar division to thin out and spread over the internalizing mass, which resembles epiboly.

Conclusions

The combination of coplanar division-based spreading and recurrent local modules for piecemeal internalization constitutes a system-level solution of gradual volume rearrangement under spatial constraint. Our results suggest that the mode of C. elegans gastrulation can be unified with the general notions of monolayer remodeling and with distinct cellular mechanisms of actomyosin-based morphogenesis.
  相似文献   

4.
The intensity of entry of cells of different rudiments of the chick embryo in mitosis and S-phase at the stages of gastrulation and early organogenesis was studied by means of statmokinetic method and thymidine autoradiography. Regular changes in the percentage of cells entering mitosis and S-phase during development were found. The fluctuations of one index do not coincide often with those of another. The values of these indices within the limits of one rudiment may be interrelated in different ways. These interrelations change in their turn from one stage to another. A suggestion is put forward to the effect that the regular changes found represent a form of expression of parasynchronous proliferation pattern, related to the regular changes of the composition of cell polations due to unequal pasage of cells through the mitotic cycle.  相似文献   

5.
Epithelial cell adhesion molecule (EpCAM) is best known as a tumor-associated protein highly expressed in carcinomas. The function of this cell surface protein during embryonic development and its potential role in cancer are still poorly understood. We identified EpCAM in a gain-of-function screen for inducers of abnormal tissue mixing during gastrulation. Elevated EpCAM levels in either the ectoderm or the mesoderm confer "invasive" properties to cells in both populations. We found that this phenotype represents an "overstimulation" of an essential activity of EpCAM in controlling cell movements during embryonic development. Surprisingly, this property is independent of the putative adhesive function of EpCAM, and rather relies on a novel signaling function that operates through down-regulation of PKC activity. We show that inhibition of novel PKCs accounts entirely for the invasive phenotype induced by abnormally high levels of EpCAM as well as for its normal function in regulating cell rearrangement during early development.  相似文献   

6.
7.
Diverse mechanisms of morphogenesis generate a wide variety of animal forms. In this work, we discuss two ways that the mechanical properties of embryonic tissues could guide one of the earliest morphogenetic movements in animals, gastrulation. First, morphogenetic movements are a function of both the forces generated by cells and the mechanical properties of the tissues. Second, cells could change their behavior in response to their mechanical environment. Theoretical studies of gastrulation indicate that different morphogenetic mechanisms differ in their inherent sensitivity to tissue mechanical properties. Those few empirical studies that have investigated the mechanical properties of amphibian and echinoderm gastrula-stage embryos indicate that there could be high embryo-to-embryo variability in tissue stiffness. Such high embryo-to-embryo variability would imply that gastrulation is fairly robust to variation in tissue stiffness. Cell culture studies demonstrate a wide variety of cellular responses to the mechanical properties of their microenvironment. These responses are likely to be developmentally regulated, and could either increase or decrease the robustness of gastrulation movements depending on which cells express which responses. Hence both passive physical and mechanoregulatory processes will determine how sensitive gastrulation is to tissue mechanics. Addressing these questions is important for understanding the significance of diverse programs of early development, and how genetic or environmental perturbations influence development. We discuss methods for measuring embryo-to-embryo variability in tissue mechanics, and for experimentally perturbing those mechanical properties to determine the sensitivity of gastrulation to tissue mechanics.  相似文献   

8.
The morphogenetic processes responsible for the initial phase of gastrulation in sea urchin embryos are not known. Here we report observations of the size and position of clones of cells derived from horseradish peroxidase (HRP)-injected mesomeres and macromeres. The displacement of these clones during the initial phase of gastrulation suggests that involution is a mechanism involved in primary invagination. Experiments with embryos marked with vital dyes indicate that movements occur only during a brief phase coincident with the invagination of the vegetal plate. Counts of cells derived from HRP-injected mesomeres and macromeres suggest it unlikely that localized growth in the vegetal plate is involved in gastrulation. An analysis of changes in cell shape during the initial phase of gastrulation indicates that there is a stage-dependent shift from cells being columnar to having their apices skewed toward the vegetal plate and an increase in the proportion of cells having basal processes during gastrulation. When embryos are grown in the presence of monoclonal antibodies to the apical lamina or monovalent fragments of these antibodies, the initial phase of gastrulation is delayed and they form partial exogastrulae. Analysis of embryos marked with HRP indicate that the antibody treatments interfere with the cellular movements observed in untreated embryos. We conclude that directed movements of cells within the blastoderm, probably employing tractoring on components of the hyaline layer, cause the buckling of the vegetal plate and displacement of presumptive endoderm cells seen during the initial phase of gastrulation.  相似文献   

9.
Fibroblasts form a body-wide cellular network   总被引:2,自引:2,他引:0  
Loose connective tissue forms a network extending throughout the body including subcutaneous and interstitial connective tissues. The existence of a cellular network of fibroblasts within loose connective tissue may have considerable significance as it may support yet unknown body-wide cellular signaling systems. We used a combination of histochemistry, immunohistochemistry, confocal scanning laser microscopy (confocal microscopy), and electron microscopy to investigate the extent and nature of cell-to-cell connections within mouse subcutaneous connective tissue. We found that fibroblasts formed a reticular web throughout the tissue. With confocal microscopy, 30% of fibroblasts processes could be followed continuously from one cell to another. Connexin 43 immunoreactivity was present at apparent points of cell-to-cell contact. Electron microscopy revealed that processes from adjacent cells were in close apposition to one another, but gap junctions were not observed. Our findings indicate that soft tissue fibroblasts form an extensively interconnected cellular network, suggesting they may have important and so far unsuspected integrative functions at the level of the whole body.  相似文献   

10.
Cell migration during development is fundamental to the establishment of the embryonic architecture. Depending on the context, cells may move either as integrated sheets of tissue or individually. Recently, molecules that are involved in both these types of cell behaviour have been identified, helping us to understand developmental processes as important as gastrulation and neural crest formation, and ultimately, the morphogenetic movements that shape the embryo.  相似文献   

11.
During amphibian gastrulation, the embryo is transformed by the combined actions of several different tissues. Paradoxically, many of these morphogenetic processes can occur autonomously in tissue explants, yet the tissues in intact embryos must interact and be coordinated with one another in order to accomplish the major goals of gastrulation: closure of the blastopore to bring the endoderm and mesoderm fully inside the ectoderm, and generation of the archenteron. Here, we present high-resolution 3D digital datasets of frog gastrulae, and morphometrics that allow simultaneous assessment of the progress of convergent extension, blastopore closure and archenteron formation in a single embryo. To examine how the diverse morphogenetic engines work together to accomplish gastrulation, we combined these tools with time-lapse analysis of gastrulation, and examined both wild-type embryos and embryos in which gastrulation was disrupted by the manipulation of Dishevelled (Xdsh) signaling. Remarkably, although inhibition of Xdsh signaling disrupted both convergent extension and blastopore closure, mesendoderm internalization proceeded very effectively in these embryos. In addition, much of archenteron elongation was found to be independent of Xdsh signaling, especially during the second half of gastrulation. Finally, even in normal embryos, we found a surprising degree of dissociability between the various morphogenetic processes that occur during gastrulation. Together, these data highlight the central role of PCP signaling in governing distinct events of Xenopus gastrulation, and suggest that the loose relationship between morphogenetic processes may have facilitated the evolution of the wide variety of gastrulation mechanisms seen in different amphibian species.  相似文献   

12.
Extracellular membranous matrix vesicles were localized and described using electronmicroscopy during chondrogenesis, osteogenesis, and dentinogenesis. Evidence indicates that matrix vesicles in each of these specific tissue types function to concentrate and transport ions and enzymes which serve as nucleation sites for the mineralization of hydroxylapatite. We have examined different developmental stages of Meckel's cartilage, alveolar bone and epithelial-mesenchymal interactions associated with tooth formation in newborn mice. These ultrastructural studies indicate matrix vesicle heterogeneity. Whereas most matrix vesicles contain alkaline phosphatase activity during cartilage, bone and dentine mineralization, in earlier developmental stages matrix vesicles contain acid phosphatase activities and little, if any, alkaline phosphatase. Tissue type, specific developmental stage, and ultrastructural criteria indicate various "classes" of matrix vesicles. During epithelial-mesenchymal interactions in tooth development, mesenchymal cells (preodontoblasts) appear to be the source of matrix vesicles as indicated by the complementarity between H-2 histocompatibility alloantigen specificity on the cell surface and that of the matrix vesicle outer surface; matrix vesicles are limited by a trilaminar membrane derived from the mesenchymal cells. Some of the vesicles located adjacent to dividing inner enamel epithelial cells contain RNA's as determined by electron microscopic autoradiography in situ, as well as by direct biochemical assays. We postulate that matrix vesicles have many different and important biological functions, one of which may be to mediate developmental information from mesenchyme to epithelia during "instructive" stages of tooth development.  相似文献   

13.
Several lines of evidence suggest that the extraembryonic endoderm of vertebrate embryos plays an important role in the development of rostral neural structures. In mice, neural inductive signals are thought to reside in an area of visceral endoderm that expresses the Hex gene. Here, we have conducted a morphological and lineage analysis of visceral endoderm cells spanning pre- and postprimitive streak stages. Our results show that Hex-expressing cells have a tall, columnar epithelial morphology, which distinguishes them from other visceral endoderm cells. This region of visceral endoderm thickening (VET) is found overlying first the distal and then one side of the epiblast at stages between 5.5 and 5.75 days post coitum (d.p.c.). In addition, we show that the epiblast has an anteroposterior-compressed appearance that is aligned with the position of the VET. Intracellular labeling of VET/Hex-expressing cells reveals an anterior and anterolateral shift from their distal epiblast position. VET/Hex-expressing cells are first localized to the anterior side of the epiblast by 5.75 d.p.c. and form a crescent on the anterior half of the embryo at the onset of gastrulation. Subsequently, VET descendants are distributed along the embryonic/extraembryonic boundary by headfold stages at 7.5 d.p.c. The morphological characteristics and position of VET/Hex-expressing cells distinguishes the future anteroposterior axis of the embryo and provide landmarks to stage mouse embryos at preprimitive streak stages. Moreover, the morphological characteristics of pregastrulation mouse embryos together with the stereotyped shift in the position of visceral endoderm cells reveal similarities among amniote embryos that suggest an evolutionary conservation of the mechanisms that pattern the rostral neurectoderm at pregastrula stages.  相似文献   

14.
The dramatic ingression of tissue sheets that accompanies many morphogenetic processes, most notably gastrulation, has been largely attributed to contractile circum-apical actomyosin 'purse-strings' in the infolding cells. Recent studies, however, including one in BMC Biology, expose mechanisms that rely less on actomyosin contractility of purse-string bundles and more on dynamics in the global cortical actomyosin network of the cells. These studies illustrate how punctuated actomyosin contractions and flow of these networks can remodel both epithelial and planarly organized mesenchymal sheets.  相似文献   

15.
Mice mutant for the TGF-beta family member, nodal, lack mesoderm and die between E8.5 and E9.5. The short ear-lethal (se(l) ) mutation, a deletion that eliminates Bmp-5, causes a strikingly similar gastrulation defect. Here we analyze se(l);nodal compound mutants and find a dosage effect. Embryos homozygous for one mutation show distinct gastrulation stage defects that depend on whether they are heterozygous or homozygous for the other mutation. Embryos mutant for nodal or se(l);nodal compound mutants fail to execute an antigenic shift indicative of mesoderm differentiation and ectoderm cells are shunted into an apoptotic pathway. Furthermore, we find a novel phenotype in se(l);nodal double mutant litters, in which two to four genetically different embryos are contained within the same deciduum. Both the gastrulation and implantation phenotypes can also arise in short ear-viable (se(v) ) and se(v); nodal mutant mice. These data indicate that loss of Bmp-5 may underlie the se(l) gastrulation phenotype and suggest that nodal and Bmp-5 interact during murine mesoderm formation. Our data also reveal an unsuspected role for Bmp-5 in implantation and the decidual response in the mouse.  相似文献   

16.
General mechanisms initiating the gastrulation process in early animal development are still elusive, not least because embryonic morphology differs widely among species. The rabbit embryo is revived here as a model to study vertebrate gastrulation, because its relatively simple morphology at the appropriate stages makes interspecific differences and similarities particularly obvious between mammals and birds. Three approaches that centre on mesoderm specification as a key event at the start of gastrulation were chosen. (1) A cDNA fragment encoding 212 amino acids of the rabbit Brachyury gene was cloned by RT-PCR and used as a molecular marker for mesoderm progenitors. Whole-mount in situ hybridisation revealed single Brachyury-expressing cells in the epiblast at 6.2 days post conception, i.e. several hours before the first ingressing mesoderm cells can be detected histologically. With the anterior marginal crescent as a landmark, these mesoderm progenitors are shown to lie in a posterior quadrant of the embryonic disc, which we call the posterior gastrula extension (PGE), for reasons established during the following functional analysis. (2) Vital dye (DiI) labelling in vitro suggests that epiblast cells arrive in the PGE from anterior parts of the embryonic disc and then move within this area in a complex pattern of posterior, centripetal and anterior directions to form the primitive streak. (3) BrdU labelling shows that proliferation is reduced in the PGE, while the remaining anterior part of the embryonic disc contains several areas of increased proliferation. These results reveal similarities with the chick with respect to Brachyury expression and cellular migration. They differ, however, in that local differences in proliferation are not seen in the pre-streak avian embryo. Rather, rabbit epiblast cells start mesoderm differentiation in a way similar to Drosophila, where a transient downregulation of proliferation initiates mesoderm differentiation and, hence, gastrulation.  相似文献   

17.
Gastrulation is a process involving cellular commitment and movements whereby the three fundamental germ layers are established in vertebrates embryos. Estrogen Receptor-Related (ERR) alpha is a nuclear receptor displaying high sequence identity to the Estrogen Receptors (ERs). However, ERRalpha is unable to bind and to be regulated by estrogens or any natural ligand to date. Whereas recent studies have suggested roles for ERRalpha in bone and adipose tissue metabolism in the mouse, little is known about its roles during embryonic development. In zebrafish embryos, ERRalpha is expressed from the beginning of gastrulation at the margin of the blastoderm that represents the presumptive mesendoderm. Using loss of function (morpholinos or a dominant-negative version of the protein) and gain of function (mRNA injection) strategies, we show here that ERRalpha is involved in epiboly and convergent-extension (CE) processes in the zebrafish. Altogether, these results propose ERRalpha as a new regulator of morphogenetic movement during gastrulation, independently of cell fate determination.  相似文献   

18.
We used cDNA microarray analysis to screen for FGF target genes in Xenopus embryos treated with the FGFR1 inhibitor SU5402, and identified neurotrophin receptor homolog (NRH) as an FGF target. Causing gain of NRH function by NRH mRNA or loss of NRH function using a Morpholino antisense-oligonucleotide (Mo) led to gastrulation defects without affecting mesoderm differentiation. Depletion of NRH by the Mo perturbed the polarization of cells in the dorsal marginal zone (DMZ), thereby inhibiting the intercalation of the cells during convergent extension as well as the filopodia formation on DMZ cells. Deletion analysis showed that the carboxyl-terminal region of NRH, which includes the "death domain," was necessary and sufficient to rescue gastrulation defects and to induce the protrusive cell morphology. Furthermore, we found that the FGF signal was both capable of inducing filopodia in animal cap cells, where they do not normally form, and necessary for filopodia formation in DMZ cells. Finally, we demonstrated that FGF required NRH function to induce normal DMZ cell morphology. This study is the first to identify an in vivo role for FGF in the regulation of cell morphology, and we have linked this function to the control of gastrulation cell movements via NRH.  相似文献   

19.
In the present paper we established the ganglioside composition of the blastula and gastrula stages of the anuran amphibian Bufo arenarum, two relevant stages characterized by dynamic changes in morphology and cellular rearrangements. Densitometric studies evidenced that GD1a and GT1b were the more abundant gangliosides of the blastula embryos whereas GM1 and GM2 were the predominant species in gastrula embryos. Analysis of ganglioside abundance indicates that the "a" and "b" synthesis pathways perform similar biosynthetic activities in the blastula stage, in contrast to the gastrula stage in which a marked predominance of the "a" pathway occurred. The spatio-temporal expression of GM1 and of polygangliotetraosyl ceramides (pGTC) was investigated by wholemount immunocytochemistry using cholera toxin B subunit (CTB) and an affinity purified human anti-GM1 antibody. The pGTC were detected as GM1 after treatment with neuraminidase. Blastomeres from the inner surface of the blastocoelic roof (BCR) of blastula embryos were GM1 and pGTC positive. At midgastrula stage, embryos showed an increased labeling on the inner surface of BCR. To establish whether the GM1 ganglioside was involved in the gastrulation processes, CTB, anti-GM1 antibodies and anti-GM1 Fab' fragments were microinjected into the blastocoel cavity of blastula embryos. Treatment with the probes blocked gastrulation. Scanning electron microscopy analysis of blocked embryos revealed that mesodermal cell migration, radial interdigitation, and convergent extension movements were affected. The blocking of gastrulation was correlated with the absence of fibronectin and EP3/EP4 on the inner surface of blastocoelic roof of CTB- or anti-GM1 treated embryos. Results show that the GM1 ganglioside is differentially expressed by embryonic cells and participates in the morphogenetic processes of amphibian gastrulation. J. Exp. Zool. 286:457-472, 2000.  相似文献   

20.
Secondary mesenchyme in sea urchin embryos is released into the blastocoel after primary mesenchyme, and although these cells have been recognized for some time, we lack knowledge about many fundamental aspects of their origin and fate. Here we documented the ontogeny of one of the principal, and least well-known, types of cells derived from secondary mesenchyme. The blastocoelar cells arise from mesenchyme released from the tip of the archenteron following the initial phase of gastrulation. The cells migrate with their cell bodies suspended in the blastocoel, rather than being apposed to the basal lamina like primary mesenchyme. The cells extend numerous fine filopodia to form a network of cytoplasmic processes around the gut, along the skeletal rods, and within the larval arms. Once the network is formed, the cells maintain their positions, although they actively translocate vesicles and cytoplasm along their filopodia. Cell counts indicate there is an initial recruitment of cells during gastrulation, followed by a more gradual increase in cell number after the larva begins to feed. Lineage studies in which 16-cell-stage macromeres were injected with horseradish peroxidase indicate that almost all of the macromere-derived mesenchyme forms pigment cells and blastocoelar cells. We propose that blastocoelar cells are a distinct subset of secondary mesenchyme that forms fibroblast-like cells in the blastocoel of sea urchin embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号