首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of MnO2 reduction by uninduced and induced whole cells and cell extracts of Bacillus 29 to several electron transport inhibitors was compared. MnO2 reduction with glucose by uninduced whole cells and cell extracts was strongly inhibited at 0.1 mM dicumarol, 100 mM azide, and 8 mM cyanide but not by atebrine or carbon monoxide, suggesting the involvement of a vitamin K--type quinone and a metalloenzyme in the electron transport chain. MnO2 reduction with ferrocyanide by uninduced cell extracts was inhibited by 5 mM cyanide and 100 mM azide but not by atebrine, dicumarol, or carbon monoxide, suggesting that the metalloenzyme was associated with the terminal oxidase activity. MnO2 reduction with glucose by induced whole cells and cell extracts, was inhibited by 1 mM atebrine, 0.1 mM dicumarol, and 10 mM cyanide but not by antimycin A, 2n-nonyl-4-hydroxyguinoline-N-oxide) (NOQNO), 4,4,4-trifluoro-1-(2-thienyl),1,3-butanedione, or carbon monoxide. Induced cell extract was also inhibited by 100 mM azide, but stimulated by 1 mM and 10 mM azide. Induced whole cells were stimulated by 10 mM and 100 mM azide. These results suggested that electron transport from glucose to MnO2 in induced cells involved such components as flavoprotein, a vitamin K-type quinone, and metalloenzyme. The stimulatory effect of azide on induced cells was explained on the basis of a branching in the terminal part of the electron transport chain, one branch involving a metalloenzyme for the reduction of MnO2 and the other involving a metalloenzyme for the reduction of oxygen. The latter was assumed to be the more azide sensitive. Spectral studies showed the presence of a-, b-, and c-type cytochromes in membrane but not in soluble fractions. Of these cytochromes, only the c type may be involved in electron transport of MnO2, owing to the lack of inhibition by antimycin A or 2n-nonyl-4-hydroxyquinoline-N-oxide. The terminal MnO2 reductase appears to be loosely attached to the cell membrane of Bacillus 29 because of cell fractionation it is found associated with both particulate and soluble fractions. Electron photomicrographs of bacilli attached to synthetic Fe-Mn oxide revealed an intimate contact of the cell walls with the oxide particles.  相似文献   

2.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

3.
Leishmania donovani cells, capable of reducing certain electron acceptors with redox potentials at pH 7.0 down to -290 mV, outside the plasma membrane, can reduce the oxidised form of alpha-lipoic acid. alpha-Lipoic acid has been used as natural electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane alpha-lipoic acid reduction by Leishmania was not inhibited by mitochondrial inhibitors as azide, cyanide, rotenone or antimycin A, but responded to hemin, modifiers of sulphhydryl groups and inhibitor of glycolysis. The protonophores carbonyl cyanide chlorophenylhydrazone and 2,4-dinitrophenol showed inhibition of alpha-lipoic acid reduction. This transmembrane redox system differs from that of mammalian cells in respect to its sensitivity of UV irradiation and stimulation by diphenylamine. Thus a naphthoquinone coenzyme appears to be involved in alpha-lipoic acid reduction by Leishmania cells.  相似文献   

4.
H_2还原减去O_2氧化的差示光谱显示424,522,552,560,603nm峰,鱼腾酮(反竞争性抑制),DBMIB,HQNO,抗霉素A,氰化钠和叠氮化钠(非竞争性抑制)明显抑制吸氢活性,表明细胞色素c,b和a分别参与氢氧化的电子传递。以Dixon作图来确定抑制剂在电子传递链中结合位点数目,鱼腾酮和DBMIB为单位点结合,HQNO和氰化物为双位点结合,HQNO所引起的部份抑制,可使对氰化钠敏感的结合位点消逝。鱼腾酮与HQNO同时存在时,其叠加或累积抑制效果表明,两种类型的细胞色素b参与氢氧化的电子传递,由H_2到O_2的电子传递于细胞色素b处分叉,对氰化物抑制敏感性也有所不同。  相似文献   

5.
F. J. Ruzicka  F. L. Crane 《BBA》1971,226(2):221-233
1. Enzymatic reduction of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone) by NADH can be used in an assay procedure for the NADH dehydrogenase. The reduction of this quinone occurs in the region of the electron transport system between the primary dehydrogenase and the cytochrome system as defined by the almost complete loss of reductase activity following piericidin A treatment.

2. Duroquinone reduction can be distinguished from ubiquinone 2 reduction by the marked inhibition of the former following phospholipase C, poly- -lysine, or chloroquine diphosphate treatment. In addition, duroquinone reduction requires the presence of endogenous ubiquinone 10 specifically whereas ubiquinone 2 reduction does not require the presence of endogenous quinone. These observations are consistent with the nonequivalency of the reduction sites of duroquinone and ubiquinone 2.

3. Duroquinol can be utilized as an electron donor for the energy-linked reduction, of NAD+. Duroquinol reduction of NAD+ is dependent upon the presence of ATP, is inhibited by oligomycin, carbonyl cyanide p-trifluoro methoxyphenylhydrazone and piericidin A, and is not inhibited by antimycin A at levels which inhibit electron transport.

4. Duroquinone reduction as well as ubiquinone 2 reduction are inhibited almost completely by phospholipase A, p-chloromercuribenzoate, o-phenanthroline, and Triton X100 treatments.  相似文献   


6.
Bacillus 29, isolated from a ferromanganese nodule from the Atlantic Ocean, was shown to possess an MnO(2)-reductase system which is induced in the presence of manganous ion. Maximal activity of the enzyme system was induced in about 5 hr in the presence of 4.35 mm MnSO(4) and was minimally dependent on the presence of either glucose or peptone and oxygen. Induction of optimal activity required the simultaneous presence of glucose and peptone. At least 30% of maximal activity was induced in 5 hr in the presence of 0.4 mum MnSO(4). Actinomycin D (5 mug/ml) or chloramphenicol (35 mug/ml), when added to the induction medium, inhibited approximately 90% of MnO(2)-reductase synthesis and incorporation of uracil-2-(14)C or leucine-1-(14)C. Cell-free extracts having MnO(2)-reductase activity were prepared by sonic disruption of cell suspensions of induced Bacillus 29. Such extracts used glucose metabolism as a source of electrons. They had an average specific activity of 1.15 nmoles of Mn(II) produced per mg of protein per hr at 25 C. They had a temperature optimum of 18 C for reductase activity and retained 50% of their activity at 4 C, the approximate temperature of the natural habitat of the organism. Extracts were stable for several days at 4 C but rapidly lost over 50% of their activity on freezing and thawing. Over 90% of the activity of the extract could be destroyed by heating in a boiling-water bath for 5 min. At a concentration of 1 mm, HgCl(2) and atebrine dihydrochloride inhibited MnO(2)-reductase activity by at least 50%, but sodium azide was ineffective. The MnO(2)-reductase activity of induced cells and extracts from them was no greater in the absence of oxygen than in its presence, confirming an earlier observation that MnO(2) and O(2) do not compete as terminal electron acceptors in the respiratory activity of this organism.  相似文献   

7.
Membrane fractions with L-lactate dehydrogenase, sn-glycerol-3-phosphate (G3P) dehydrogenase, and nitrate reductase activities were prepared from Staphylococcus aureus wild-type and hem mutant strains. These preparations reduced ferric to ferrous iron with L-lactate or G3P as the source of reductant, using ferrozine to trap the ferrous iron. Reduction of ferric iron was insensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) with either L-lactate or G3P as reductant, but oxalate and dicumarol inhibited reduction with L-lactate as substrate. The membranes had L-lactate- and G3P-nitrate reductase activities, which were inhibited by azide and by HQNO. Reduction of ferric iron under anaerobic conditions was inhibited by nitrate with preparations from the wild-type strain. This effect of nitrate was abolished by blocking electron transport to the nitrate reductase system with azide or HQNO. Nitrate did not inhibit reduction of ferric iron in heme-depleted membranes from the hem mutant unless hemin was added to restore L-lactate- and G3P-nitrate reductase activity. We conclude that reduced components of the electron transport chain that precede cytochrome b serve as the source of reductant for ferric iron and that these components are oxidized preferentially by a functional nitrate reductase system.  相似文献   

8.
The catalysis of hydrogen peroxide accumulation by the mitochondrial, membrane-associated NADH oxidase and less active succinoxidase of adult Hymenolepis diminuta was confirmed. NADH-dependent peroxide formation by isolated mitochondrial membranes occurred at about half the coincident rates of NADH and oxygen utilization, whereas succinate-dependent peroxide formation accounted for approximately 40% of the oxygen consumed. These findings, coupled with evaluations of the oxidases, indicated that both systems use in common 2 mechanisms for oxygen reduction, 1 of which is peroxide-forming. Neither system was sensitive to cyanide, azide, or antimycin A. Rotenone inhibition of NADH oxidation resulted in equivalent decreases in oxygen consumption by the peroxide-forming and nonperoxide-forming mechanisms. In contrast, malonate inhibition occurred via disruption of the peroxide-forming mechanism. Fumarate stimulated membrane-catalyzed NADH oxidation, despite aerobic conditions, and this fumarate reductase was rotenone-sensitive. NADH- or succinate-dependent peroxide formation virtually was abolished and oxygen consumption was minimal in the presence of fumarate. Malonate also inhibited fumarate-dependent NADH oxidation and succinate-dependent peroxide formation/oxygen consumption. Collectively, these findings clearly indicate that NADH- or succinate-dependent hydrogen peroxide accumulation involves the malonate-sensitive fumarate reductase, in the absence of fumarate. A model of the H. diminuta electron transport system is presented.  相似文献   

9.
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.  相似文献   

10.
Reduced ferredoxin: CO2 oxidoreductase (CO2-reductase) from Clostridium pasteurianum catalyzes the reduction of CO2 to formate at the expense of reduced ferredoxin, an isotopic exchange between CO2 and formate in the absence of ferredoxin, and the oxidation of formate to CO2 with oxidized ferredoxin. The three activities were found to be equally affected by monovalent anions known to be ligands to transition metals: The enzyme was reversibly inhibited by azide (Ki = 0.004mM), cyanate (Ki = 0.3 mM), thiocyanate (Ki = 1mM), nitrite (Ki = 0.4mM), nitrate (Ki = 6mM), chlorate (Ki = 3mM), fluoride (Ki = 5mM), and by chloride, bromide, iodide (Ki greater than 5mM). There was no observable effect of pH on the inhibition constants. The enzyme was not inhibited by carbon monoxide. The enzyme was irreversibly inactivated by low concentrations (10muM) of cyanide. The rate of inactivation increased with increasing pH with an inflection point near pH 9.5. Reduced ferredoxin and formate rather than oxidized ferredoxin or CO2 protected the enzyme from inactivation by cyanide. The enzyme was protected by azide and cyanate from inactivation. In the presence of high concentrations of the monovalent anions the rate of inactivation by heat (55 degrees C), by molecular oxygen, and by cyanide was decreased by a factor of more than 100. Half maximal protection was observed at the Ki concentrations of the two reversible inhibitors. The data are interpreted to indicate that a transition metal of weak "a class" character and a disulfide are catalytically significant groups of CO2-reductase from C. pasteurianum.  相似文献   

11.
Aerobic chromate reduction by Bacillus subtilis   总被引:6,自引:0,他引:6  
We have studied the reduction of hexavalent chromium (chromate) to the less toxic trivalent form by using cell suspensions and cell-free extracts from the common soil bacterium, Bacillus subtilis. B. subtilis was able to grow and reduce chromate at concentrations ranging from 0.1 to 1 mM K2CrO4. Chromate reduction was not affected by a 20-fold excess of nitrate-compound that serves as alternate electron acceptor and antagonizes chromate reduction by anaerobic bacteria. Metabolic poisons including sodium azide and sodium cyanide inhibited chromate reduction. Reduction was effected by a constitutive system associated with the soluble protein fraction and not with the membrane fraction. The reducing activity was heat labile and showed a Km of 188 m CrO4 2-. The reductase can mediate the transfer of electrons from NAD(P)H to chromate. The results suggest that chromate is reduced via a detoxification system rather than dissimilatory electron transport.  相似文献   

12.
Manganese transport into yeast cells is energy-dependent. It is dependent on endogenous sources of energy and is inhibited by olygomycin (12.5-25 microgramg/ml), 2,4-dinitrophenol (1 mM), 2-deoxyglucose (1-50 mM) and sodium azide (1-10 mM), but is stimulated by cyanide and glucose. The stimulating effect of glucose is eliminated by N-ethylmaleimide and iodoacetate, which apparently inhibit the transport of glucose itself. About 75% of the manganese accumulated in the presence of glucose is found in yeast protoplasts and nearly 25% in the cell walls. A major portion of the accumulated manganese is found in vacuoles. The concentration of osmotically free manganese in the cytosol did not exceed 2 mM, but the concentration in vacuoles was up to 14 mM. The tonoplast is assumed to have a transport system for divalent cations, thereby regulating their concentration in the cytosol.  相似文献   

13.
A Mo -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo (10 mM), the bacterium reduced Mo to form molybdenum blue. Approximately 27% of Mo added to the medium was reduced after 28 h of cultivation. The reduction of Mo with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo reduction. NADH and N,N,N',N' -tetramethyl-p-phenylenediamine served as electron donors for Mo reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo reduction. Both ferric and stannous ions strongly enhanced the activity of Mo reduction by NADH.  相似文献   

14.
1. Magnesium-protoporphyrin chelatase activity, previously shown in whole cells of Rhodopseudomonas spheroides, could not be demonstrated in cell-free extracts prepared in different ways, although spheroplasts retained moderate activity. Slight activity was detected also in whole cells of Rhodospirillum rubrum. 2. The effects on the activity of the enzyme of inhibitors of electron and energy transfer were studied in whole cells of Rps. spheroides. Amytal, rotenone, azide and cyanide inhibited at low pO(2) in the dark but not under anaerobic conditions in the light. Antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide, as well as uncouplers and oligomycin, inhibited under all environmental conditions. 3. The effects on magnesium chelatase activity of intermediates of the tricarboxylic acid cycle, of thenoyltrifluoroacetone, of a number of artificial electron donors or acceptors, of various quinones and of the oxidation-reduction indicator dyes Benzyl Viologen and Methyl Viologen are described. 4. It was concluded that electron transport between a b-type and a c-type cytochrome as well as associated energy conservation and transformation reactions were essential for activity. There was also a specific requirement for ATP. 5. Exogenous protoporphyrin and magnesium protoporphyrin monomethyl ester were incorporated into bacteriochlorophyll or late precursors by whole cells. 6. Evidence is presented that the insertion of magnesium was the only step inhibited by oxygen in the biosynthetic pathway between protoporphyrin and bacteriochlorophyll.  相似文献   

15.
Nitrite reductase from Clostridium perfringens was purified by chromatographies on DEAE-cellulose, DEAE-Sephadex, Sephadex G-150, and hydroxylapatite and by isoelectric focussing to a homogeneous state, showing essentially a single protein band in disc gel electrophoresis and a single immuno-precipitation line in double diffusion against antiserum obtained from immunized rabbits. The reductase was induced in the presence of nitrate. It had a molecular weight of 54,000 and showed no absorption peak in the visible region. The pH optimum was 6.2 and Km for nitrite was 5 mM. Ferredoxin, as well as viologen dyes, was found to be an electron donor. The product of nitrite reduction was hydroxylamine. This reductase was inhibited by o-phenanthroline and azide but not by cyanide or diethyldithiocarbamate.  相似文献   

16.
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of α-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from −290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of α-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of α-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

17.
Respiration of a normal strain of Candida albicans was compared with that of a divisionless mutant which has a biochemical lesion such that metabolically generated hydrogen "spills over," during growth, for non-specific dye reduction. This waste is not at expense of growth, since both strains grow at essentially similar rates, nor at expense of respiration, since the mutant reduces oxygen more rapidly than the normal strain. Respiration in both strains is qualitatively similar, and seemingly unique among highly aerobic organisms in that it is not mediated by cytochrome oxidase. In resting cells of both strains, respiration is not only resistant to, but markedly stimulated by, high concentrations of cyanide, carbon monoxide, and azide. In contrast, growth of these yeasts is inhibited by low concentrations of cyanide and azide. Cytochrome oxidase could not be detected in cell-free preparations; reduced cytochrome c was not oxidized by such preparations. Cytochrome bands could not be observed in thick cell suspensions treated with reducing agents. However, incorporation of superoptimal levels of zinc and iron into the culture medium resulted in growth of cells possessing distinct cytochrome bands; respiration of these cells remained insensitive to cyanide, monoxide, and azide, and the bands were maintained in a reduced form on oxygenation. In the divisionless yeast, tetrazolium dyes compete with oxygen for reduction; this is not the case in the normal strain. The firmness with which hydrogen transfer is channeled in the latter for reduction of disulfide bonds (of importance in the division mechanism) and of oxygen, is contrasted with the lack of such control in the mutant.  相似文献   

18.
1. An NADH-nitrate oxidoreductase (EC 1.6.6.1) of Chlorella has the unusual property of existing in cell-free extracts mainly in the form of an inactive precursor which can be activated by a variety of procedures. This enzyme is associated with a cytochrome of the b type.

2. The inhibitors, azide, cyanate, thiocyanate and nitrite, react rapidly with the enzyme, with kinetics which show that they are competitive with nitrate.

3. The inhibitors, cyanide and hydroxylamine, react slowly with the reduced form of the enzyme to give an inactive product which can slowly be reactivated in the presence of nitrate. There is at least a superficial similarity between the reactivation of the inhibited enzyme and the activation of the enzyme precursor in fresh extracts.

4. Mammalian cytochrome c, dichlorophenolindophenol and ferricyanide can substitute for nitrate as oxidants for NADH in the presence of the enzyme. This “diaphorase” reaction does not require activation, but is fully active in fresh extracts. It is not inhibited by cyanide, hydroxylamine, azide, cyanate, thiocyanate, or by the substrate, nitrate. Oxidized cytochrome c, on the other hand, inhibits the reduction of nitrate by NADH in the presence of the enzyme.

5. Pyridoxal phosphate inhibits both nitrate reductase and cytochrome c reductase to about the same extent.  相似文献   


19.
Interactions among substrates and inhibitors of nitrogenase.   总被引:22,自引:7,他引:15       下载免费PDF全文
Examination of interactions among various substrates and inhibitors reacting with a partially purified nitrogenase from Azotobacter vinelandii has shown that: nitrous oxide is competitive with N2; carbon monixide and acetylene are noncompetitive with N2; carbon monoxide, cyanide, and nitrous oxide are noncompetitive with acetylene, whereas N2 is competitive with acetylene; carbon monoxide is noncompetitive with cyanide, whereas azide is competitive with cyanide; acetylene and nitrous oxide increase the rate of reduction of cyanide. The results are understandable if nitrogenase serves as an electron sink and substrates and inhibitors bind at multiple modified sites on reduced nitrogenase. It is suggested that substrates such as acetylene may be reduced by a less completely reduced electron sink than is required for the six-electron transfer necessary to reduce N2.  相似文献   

20.
Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号