首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial characterization of a chlamydial receptor on mammalian cells   总被引:2,自引:0,他引:2  
We have examined characteristics of the binding of eukaryotic cells to chlamydial elementary body (EB)-specific proteins. A wide variety of eukaryotic cell lines bound to representatives of both Chlamydia trachomatis lymphogranuloma venereum (LGV) and trachoma biovars and a C. psittaci strain meningopneumonitis (Mn) suggesting the presence of a common host cell receptor. Neither tunicamycin nor neuraminidase treatment of HeLa cells impaired binding to C. trachomatis EB, implying that host cell N-linked carbohydrate domains and sialic acid moieties, respectively, are not involved in attachment. However, trypsinized HeLa cells do not bind to EB, suggestive of a proteinaceous host cell receptor. The trypsin sensitivity of two EB-specific binding proteins Mr = 18,000 and 31,000) was also examined, and the finding that 125I-labeled HeLa cells bind both the 18,000 and 31,000-dalton proteins after chlamydial trypsinization corroborates our earlier observation that these EB binding proteins mediate attachment.  相似文献   

2.
R Kaul  K L Roy    W M Wenman 《Journal of bacteriology》1987,169(11):5152-5156
The gene encoding an 18,000-dalton eucaryotic cell-binding protein of Chlamydia trachomatis serovar L2 was cloned into Escherichia coli, and the nucleotide sequence of a 1,658-base-pair PstI restriction endonuclease fragment encoding this protein was determined. The recombinant chlamydial gene consists of a 486-base-pair open reading frame encoding a polypeptide of molecular weight 18,314. The resultant polypeptide, comprising 162 amino acids, possesses a highly charged carboxy-terminal end. The expression of this recombinant protein is under the control of a vector promoter. The recombinant 18,000-dalton protein possessed the same eucaryotic cell-binding characteristics as did the native chlamydial 18,000-dalton protein when electrophoresed and transferred to nitrocellulose. Polyclonal antibodies to the recombinant protein exhibited neutralizing activity.  相似文献   

3.
HeLa-cell-membrane fractions isolated by sonication as used previously to identify chlamydial adhesins were examined by a blotting technique for binding chlamydial elementary bodies (EB). One HeLa cell protein with apparent molecular mass of 32 kDa was found to bind native EB. A monoclonal antibody (mAb) raised against this chlamydial binding host-cell protein reacted with eucaryotic histones. Histone fractions were capable of binding EB in an ELISA assay and histone H1 was identified as the chlamydial-binding host cell protein in the Hela cell membrane fraction. Probing with specific mAbs against histone H3 and DNA confirmed that chromatin components were present in the host-cell membrane extract. These data suggest that the HeLa-cell-binding chlamydial proteins were previously identified by their reaction with chromatin and not with membrane components.  相似文献   

4.
An electroblotting technique was used to identify proteins of Chlamydia that bound surface-radioiodinated and Triton X-100-solubilized HeLa cell extracts. Two proteins, with apparent molecular masses of 18 and 32 kilodaltons (kDa), that bound HeLa cell surface components were identified on Chlamydia trachomatis L2 elementary bodies (EBs). Radioiodinated heparin, which disrupts chlamydial association with cultured cells, was also bound by these proteins. These two proteins were found on EBs but were absent or were present in reduced amounts on the noninfectious reticulate bodies. All C. trachomatis strains tested displayed two such proteins, although the apparent molecular weight of the larger protein varied with serotype in correlation with biotype and the disease that it caused. Two Chlamydia psittaci strains examined displayed only a single binding protein in the range of 17 to 19 kDa. All of the binding proteins stained intensely and distinctively on silver-stained sodium dodecyl sulfate-polyacrylamide gels and displayed an unusual sensitivity to reducing agents. The 32-kDa protein was not seen and did not bind 125I-labeled HeLa cell components if the EBs were solubilized in the presence of 2-mercaptoethanol. The 32-kDa protein was not affected by dithiothreitol, however. Similar to the effect of 2-mercaptoethanol, the 32-kDa protein was not visualized after treatment of EBs with the protease inhibitors tosyl-phenylalanine chloromethyl ketone (TPCK) or tosyl-lysine chloromethyl ketone (TLCK). TPCK and TLCK also abolished infectivity as did the alkylating agents N-ethylmaleimide and iodoacetamide, yet the latter two agents did not affect the appearance of the 32-kDa protein. These proteins were not detected in immunoblots with either rabbit antisera to C. trachomatis L2 EBs or by serum from a patient with lymphogranuloma venereum. The role of these proteins in the interaction of chlamydiae with host cells is not clear, but the binding of eucaryotic cell surface components and heparin, presence only during the infectious stage of the life cycle, variation between serotypes in correlation with disease, and sensitivity to reducing agents or protease inhibitors, collectively, suggest a role for these proteins in parasite-host interactions.  相似文献   

5.
The human pathogen Chlamydia trachomatis is an obligate intracellular bacterium, characterized by a developmental cycle that alternates between the infectious, extracellular elementary bodies and intracellular, metabolically active reticulate bodies. The cellular immune effector interferon gamma (IFN-gamma) inhibits chlamydial multiplication in human epithelial cells by induction of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase. IFN-gamma causes persistent C. trachomatis serovar A infections with atypical reticulate bodies that are unable to redifferentiate into elementary bodies and show diminished expression of important immunogens, but not of GroEL. However, the sensitivity to IFN-gamma varies among serovars of C. trachomatis. In our previous study significant IFN-gamma-specific, but tryptophan reversible, induction of proteins in C. trachomatis A and L2 with molecular masses of approximately 30 and 40 kDa was observed on 2D-gels. The 30-kDa protein from C. trachomatis L2 migrated with a significantly lower molecular weight in C. trachomatis A. In this paper we include C. trachomatis B, C and D in our investigations and identify the proteins as alpha- and beta-subunits of the chlamydial tryptophan synthase using matrix-assisted laser desorption/ionization mass spectrometry. DNA sequencing of the trpA genes from C. trachomatis A and C shows that the TrpA in these serovars is a 7.7-kDa truncated version of C. trachomatis D and L2 TrpA. The truncation probably impairs the TrpA activity, thus elucidating a possible molecular mechanism behind variations in the pathogenesis of C. trachomatis serovars.  相似文献   

6.
A panel of monoclonal antibodies (MAb) was generated against Chlamydia trachomatis serovar B, an etiologic agent of blinding trachoma. The specificities of MAb were determined by dot blot assay by using viable elementary bodies of 13 C. trachomatis serovars and two C. psittaci strains. The dot blot assay was used to identify those antigens that were unique and immunoaccessible on the chlamydial surface. MAb were identified that recognized bi-specific (serovars B and Ba) or subspecies-specific (various B complex serovars) surface-exposed antigenic determinants that were either resistant or sensitive to heat denaturation (56 degrees C, 30 min). All of the MAb recognized the major outer membrane protein as determined by either immunoblotting or radioimmunoprecipitation. MAb specific for immunoaccessible major outer membrane protein epitopes protected mice from toxic death after i.v. injection of B serovar elementary bodies and neutralized the infectivity of the organism for monkey eyes. In contrast, MAb reactive against non-immunoaccessible subspecies- or species-specific major outer membrane protein epitopes or against an immunoaccessible genus-specific epitope located on chlamydial lipopolysaccharide did not protect mice from toxic death or neutralize infectivity of the parasite for monkey eyes. These data suggest that those major outer membrane protein antigenic determinants that are serovar or serogroup specific and are accessible to antibody on the chlamydial cell surface may be useful as a recombinant subunit vaccine for trachoma.  相似文献   

7.
It is known that neutralizing species-specific or serovar-specific antibodies are produced in response to chlamydial infection in humans and in some animal species. In a previous study, a strong in vitro neutralizing activity to Chlamydia suis in 80% of sera from C. suis-infected pigs had been observed. In view of the close relationship between C. suis and Chlamydia trachomatis, in the present study, the neutralizing activity against D-K C. trachomatis and C. suis purified elementary bodies (EBs) in sera collected from C. trachomatis-infected patients and C. suis-infected pigs was evaluated. A neutralizing activity of 50-70% was observed in the human sera against the homologous serovar and one to five heterologous C. trachomatis serovars. These sera were also able to neutralize C. suis EBs. The pig sera showed a strong neutralizing activity (70-100%) against C. suis EBs and all eight urogenital C. trachomatis serovars. These results suggested the presence of common immunogenic antigens in C. trachomatis and C. suis. Immunoblot analysis, performed to elucidate the target of this neutralizing activity, showed a clear reactivity in human and pig sera against two proteins of 150 and 40 kDa MW, when tested either with C. trachomatis or with C. suis EBs.  相似文献   

8.
9.
The mechanism by which the intracellular bacterial pathogen Chlamydia trachomatis enters eukaryotic cells is poorly understood. There are conflicting reports of entry occurring by clathrin-dependent and clathrin-independent processes. We report here that C. trachomatis serovar K enters HEp-2 and HeLa 229 epithelial cells and J-774A.1 mouse macrophage/monocyte cells via caveolin-containing sphingolipid and cholesterol-enriched raft microdomains in the host cell plasma membranes. First, filipin and nystatin, drugs that specifically disrupt raft function by cholesterol chelation, each impaired entry of C. trachomatis serovar K. In control experiments, filipin did not impair entry of the same organism by an antibody-mediated opsonic process, nor did it impair entry of BSA-coated microspheres. Second, the chlamydia-containing endocytic vesicles specifically reacted with antisera against the caveolae marker protein caveolin. These vesicles are known to become the inclusions in which parasite replication occurs. They avoid fusion with lysosomes and instead traffic to the Golgi region, where they intercept Golgi-derived vesicles that recycle sphingolipids and cholesterol to the plasma membrane. We also report that late-stage C. trachomatis inclusions continue to display high levels of caveolin, which they likely acquire from the exocytic Golgi vesicles. We suggest that the atypical raft-mediated entry process may have important consequences for the host-pathogen interaction well after entry has occurred. These consequences include enabling the chlamydial vesicle to avoid acidification and fusion with lysosomes, to traffic to the Golgi region, and to intercept sphingolipid-containing vesicles from the Golgi.  相似文献   

10.
Chlamydia trachomatis Mip-like protein   总被引:4,自引:0,他引:4  
A 27 kDa Chlamydia trachomatis Mip-like protein with homology of a 175-amino-acid C-terminal fragment to the surface-exposed Legionella pneumophila mip-gene product has previously been described. In this paper the entire chlamydia Mip-like sequence of C. trachomatis serovar L2 (lymphogranuloma venereum (LGV) biovar) is presented. The sequence shows high similarity to the legionella Mip protein and its C-terminal region, like that of the legionella Mip, has high amino acid similarity to eukaryotic and prokaryotic FK506-binding proteins. The chlamydial mip-like gene was detected by polymerase chain reaction (PCR) in other C. trachomatis serovars and by sequencing of the mip-like genes of serovars B and E (trachoma biovar) was shown to be highly conserved within the two major biovars of C. trachomatis. Monoclonal and polyclonal antibodies raised against the recombinant Mip-like protein failed to demonstrate surface-exposed epitopes on infectious elementary bodies or reproductive reticulate body forms either by immunofluorescence or immuno-gold electron microscopy. However, a complement-dependent inhibition of up to 91% of infectivity for cell cultures was observed with antibodies to the N-terminal fragment of the Mip-like protein suggesting that antibody-accessible epitopes are present on infectious EBs.  相似文献   

11.
Recombinant fragments of the major outer-membrane protein (MOMP) of Chlamydia trachomatis, expressed at high levels in Escherichia coli, were isolated and purified. Antisera to the recombinant proteins reacted preferentially with overlapping synthetic peptides covering the immunoaccessible variable segments of MOMP. These sera also reacted in a species-specific manner with the surface of intact infectious elementary bodies, and in a Chlamydia genus-specific manner in assays using denatured or bound chlamydial antigens. The ability of recombinant MOMP preparations to elicit antibody to the surface of chlamydial elementary bodies raises the possibility that these proteins may be useful for chlamydial vaccine development.  相似文献   

12.
To determine if the host-modulated adherence characteristics of the intracellular bacterial pathogen Chlamydia trachomatis were due to the acquisition of altered surface-exposed proteins, highly purified chlamydiae grown in two different host cells were analysed. Two serovars, L1 and E, were grown for multiple passages in both HeLa and McCoy host cells. Numerous protein differences in the chlamydial elementary bodies (EB) of each serovar grown in the two different hosts were detected by two-dimensional (2-D) gel electrophoresis and fluorography of radioactively labelled proteins. At least four to six serial passages in the alternative host were necessary before the changes were apparent. Iodination of suspensions of purified chlamydiae and 2-D electrophoresis revealed several surface proteins that were determined by the host cells in which the bacteria had replicated. These iodinated chlamydial proteins were removed by treatment of the iodinated EB with trypsin, indicating their location at the bacterial surface. Two of the major constituents of the outer-membrane complex, the cysteine- and methionine-rich 60 kDa and 40 kDa proteins, remained unchanged in both molecular mass and charge during the host adaptation. Several chlamydial proteins capable of binding iodinated host membrane preparations also exhibited host-dependent alterations. Immunoblotting experiments with a rabbit and a human polyclonal sera indicated that distinct host-specified chlamydial proteins were reactive with the two sera.  相似文献   

13.
14.
Abstract Isolated HeLa plasma membrane (PM) preparations and extracts containing either cell-surface proteins or lipids were examined for inhibition of adherence of radiolabeled Chlamydia trachomatis serovar E elementary bodies to glutaraldehydefixed HeLa monolayers. A dose-dependent adherence-inhibitory activity could be demonstrated with the PM. A urea extract as well as lipids from HeLa cells also inhibited chlamydial cytadherence. The inhibitory activity of the PM was trypsin-sensitive. It was absent when the urea extract was prepared from trypsin-treated HeLa cells. The urea extract was subjected to electrophoresis and protein blotting using a native gel system. Probing with radiolabeled chlamydial cytadhesin showed a single protein present in the urea extract that could represent a HeLa cell protein receptor for the chlamydiae.  相似文献   

15.
Interactions between Chlamydia trachomatis, host cells, and the immune system are believed to involve lipopolysaccharide (LPS). We used immunogold techniques to study the distribution of chlamydial LPS in cultured cells infected with C. trachomatis LGV-L1. McCoy cells inoculated with C. trachomatis were cultured and then fixed and embedded in situ with acrylic resins. Sections were immunolabeled with a protein A-gold method using antisera to the genus-specific, periodate-sensitive epitope on chlamydial LPS. Pre-embedding immunogold labeling on permeabilized cells was also done. By post-embedding methods, labeling for LPS was equally abundant over the outer membranes of elementary (EB) and reticulate bodies (RB). By post-embedding labeling, the sub-surface side of the EB outer membrane was more heavily labeled than the surface side. By pre-embedding labeling, LPS was found to be less abundant on the surface of EBs than RBs. Labeling for LPS was found over apparent lysosomes in McCoy cells and over electron-dense blebs on or near the surface of the plasma membranes of McCoy cells. These results indicate that the concentration of LPS in chlamydial membranes is constant during development but that with development its location changes from being mostly cell-surface to sub-surface. These results show that the post-embedding immunogold technique can be a useful approach for the cell culture-based study of chlamydial LPS.  相似文献   

16.
Mitotic cells have been detergent extracted under conditions that support microtubule assembly. When HeLa cells are lysed in the presence of brain tubulin, mitotic-arrested cells nucleate large asters and true metaphase cells yield spindles that remain enclosed within a roughly spherical cage of filamentous material. Detergent-extracted mitotic Chinese hamster ovary (CHO) cells show a similar, insoluble cage but the mitotic apparatus is only occasionally stabilized. In later stages of mitosis, HeLa cages are observed in elongated and furrowed configurations. In the terminal stages of cell division, two daughter filamentous networks are connected by the intercellular bridge. When observed in the electron microscope the cages include fibers 7-11 nm in diameter. The polypeptide composition of cages isolated from mitotic HeLa cells is complex, but the major polypeptides are a group with mol wt ranging from 43,000-60,000 daltons and a high molecular weight polypeptide. CHO cells contain a subset of these proteins which includes a major 58,000-dalton and a high molecular weight polypeptide. Two different antisera directed against the vimentin-containing intermediate filaments bind to polypeptides in the electrophoretic profiles of isolated HeLa and CHO cages and stain the cages, as visualized by indirect immunofluorescence. These results suggest that the HeLa and CHO cages include intermediate filaments of the vimentin type. The polypeptide composition of HeLa cages suggests that they also contain tonofilaments. The cages apparently form as the cells enter mitosis. We propose that these filamentous cages maintain the structural continuity of the cytoplasm while the cell is in mitosis.  相似文献   

17.
The host cell cytoskeleton is known to play a vital role in the life cycles of several pathogenic intracellular microorganisms by providing the basis for a successful invasion and by promoting movement of the pathogen once inside the host cell cytoplasm. McCoy cells infected with Chlamydia trachomatis serovars E or L2 revealed, by indirect immunofluorescence microscopy, collocation of microtubules and Chlamydia -containing vesicles during the process of migration from the host cell surface to a perinuclear location. The vast majority of microtubule-associated Chlamydia vesicles also collocated with tyrosine-phosphorylated McCoy cell proteins. After migration, the Chlamydia -containing vesicles were positioned exactly at the centre of the microtubule network, indicating a microtubule-dependent mode of chlamydial redistribution. Inhibition of host cell dynein, a microtubule-dependent motor protein known to be involved in directed vesicle transport along microtubules, was observed to have a pronounced effect on C. trachomatis infectivity. Furthermore, dynein was found to collocate with perinuclear aggregates of C. trachomatis E and L2 but not C. pneumoniae VR-1310, indicating a marked difference in the cytoskeletal requirements for C. trachomatis and C. pneumoniae during early infection events. In support of this view, C. pneumoniae VR-1310 was shown to induce much less tyrosine phosphorylation of HeLa cell proteins during uptake than that seen for C. trachomatis .  相似文献   

18.
19.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

20.
Our understanding of how obligate intracellular pathogens co-opt eukaryotic cellular functions has been limited by their intractability to genetic manipulation and by the abundance of pathogen-specific genes with no known functional homologues. In this report we describe a gene expression system to characterize proteins of unknown function from the obligate intracellular bacterial pathogen Chlamydia trachomatis. We have devised a homologous recombination-based cloning strategy to construct an ordered array of Saccharomyces cerevisiae strains expressing all Chlamydia-specific genes. These strains were screened to identify chlamydial proteins that impaired various yeast cellular functions or that displayed tropism towards eukaryotic organelles. In addition, to identify bacterial factors that are secreted into the host cell, recombinant chlamydial proteins were screened for reactivity towards antisera raised against vacuolar membranes purified from infected mammalian cells. We report the identification of 34 C. trachomatis proteins that impact yeast cellular functions or are tropic for a range of eukaryotic organelles including mitochondria, nucleus and cytoplasmic lipid droplets, and a new family of Chlamydia-specific proteins that are exported from the parasitopherous vacuole. The versatility of molecular manipulations and protein expression in yeast allows for the rapid construction of comprehensive protein expression arrays to explore the function of pathogen-specific gene products from microorganisms that are difficult to genetically manipulate, grow in culture or too dangerous for routine analysis in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号