首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article presents the role of the hypothalamus in reproduction, the definition of hypogonadotropic hypogonadism (HH), and the causes of acquired and syndromic HH and idiopathic HH (IHH). The authors present a short review of major causes of acquired HH, but most of the causes of IHH will not be discussed because they do not fall within the scope of the article. More attention is devoted to idiopathic HH, especially the genetic basis of IHH. Also presented in the article are clinical criteria of CHARGE syndrome. Later, the article discusses the clinical presentation, establishing the diagnosis, and management of IHH. The article ends with a brief overview of nutritional hypothalamic dysfunction and athletic amenorrhea.  相似文献   

2.
Hereditary hemochromatosis is a genetic disease that progresses silently. This disease is often diagnosed late when complications appear. Hypogonadotropic hypogonadism (HH) is one of the classical complications of hemochromatosis. Its frequency is declining probably because of earlier diagnosis and better informed physicians. Certain symptoms linked to HH can have an impact on a patient’s sexuality, such as decreased libido, erectile dysfunction, and impairment of ejaculation, as well as on his reproductive capacities.This review is based on an online search in English, French and German language publications found in PubMed/Medline, up to 23 September 2016 using the following key word: Male infertility, Hypogonadotropic Hypogonadism, Hereditary Hemochromatosis.Thirty-four papers met these inclusion criteria. This review describes the impact of iron overload on male fertility, resulting in hypogonadotropic hypogonadism and proposes treatment modalities.  相似文献   

3.
Hypogonadotropic hypogonadism (HH) is characterised by delayed puberty and infertility. Congenital HH comprises Kallmann syndrome with hypo-/anosmia and idiopathic HH (IHH). The genetic origin remains unknown in most cases, but the defective GnRH receptor gene (GNRHR) accounts for a considerable proportion of IHH. Here we describe a pair of siblings diagnosed with IHH. Aged 17 years, the boy was referred because of short stature (162 cm) and overweight (62.5 kg). He presented no signs of puberty, bone age of 14.5 years and insulin resistance. His sister, aged 16 years, also displayed delayed puberty. She was 166 cm tall and weighed 52 kg; her bone age was 12.5 years. Pelvic ultrasonography showed an infantile uterus and fibrous ovaries. In both siblings, serum gonadotropins were extremely low, and non-responsive to GnRH. Testosterone (1.38 nmol/l) and IGF1 (273 ng/ml) were decreased in the boy, although the girl did not present IFG1 deficiency. Her serum oestradiol was 10 pg/ml. MRIs of the hypothalamo-pituitary region and olfactory bulbs revealed them to be normal. The patients' sense of smell was unaltered. Their parents appeared to be first degree cousins. Considering the clinical data and potentially autosomal recessive HH transmission, the GNRHR gene was screened. The siblings turned out to be homozygous for the G416A transition, which had previously been identified in other HH individuals. The parents were heterozygous mutation carriers. The proband, moderately responding to LH, was started on low dose testosterone replacement, and his sister on transdermal oestradiol. Molecular data indicative of GnRH resistance could guide their future therapy should they desire fertility restoration. Further observations of the male patient may provide insights into androgen's influence on body mass, growth and insulin sensitivity.  相似文献   

4.
5.
6.
Selective cortical interneuron and GABA deficits in cyclin D2-null mice   总被引:2,自引:0,他引:2  
In contrast to cyclin D1 nulls (cD1-/-), mice without cyclin D2 (cD2-/-) lack cerebellar stellate interneurons; the reason for this is unknown. In the present study in cortex, we found a disproportionate loss of parvalbumin (PV) interneurons in cD2-/- mice. This selective reduction in PV subtypes was associated with reduced frequency of GABA-mediated inhibitory postsynaptic currents in pyramidal neurons, as measured by voltage-clamp recordings, and increased cortical sharp activity in the EEGs of awake-behaving cD2-/- mice. Cell cycle regulation was examined in the medial ganglionic eminence (MGE), the major source of PV interneurons in mouse brain, and differences between cD2-/- and cD1-/- suggested that cD2 promotes subventricular zone (SVZ) divisions, exerting a stronger inhibitory influence on the p27 Cdk-inhibitor (Cdkn1b) to delay cell cycle exit of progenitors. We propose that cD2 promotes transit-amplifying divisions in the SVZ and that these ensure proper output of at least a subset of PV interneurons.  相似文献   

7.
Shaker-type potassium (K+) channels are composed of pore-forming alpha subunits associated with cytoplasmic beta subunits. Kv beta2 is the predominant Kv beta subunit in the mammalian nervous system, but its functions in vivo are not clear. Kv beta2-null mice have been previously characterized in our laboratory as having reduced lifespans, cold swim-induced tremors and occasional seizures, but no apparent defect in Kv alpha-subunit trafficking. To test whether strain differences might influence the severity of this phenotype, we analyzed Kv beta2-null mice in different strain backgrounds: 129/SvEv (129), C57BL/6J (B6) and two mixed B6/129 backgrounds. We found that strain differences significantly affected survival, body weight and thermoregulation in Kv beta2-null mice. B6 nulls had a more severe phenotype than 129 nulls in these measures; this dramatic difference did not reflect alterations in seizure thresholds but may relate to strain differences we observed in cerebellar Kv1.2 expression. To specifically test whether Kv beta1 is a genetic modifier of the Kv beta2-null phenotype, we generated Kv beta1.1-deficient mice by gene targeting and bred them to Kv beta2-null mice. Kv beta1.1/Kv beta2 double knockouts had significantly increased mortality compared with either single knockout but still maintained surface expression of Kv1.2, indicating that trafficking of this alpha subunit does not require either Kv beta subunit. Our results suggest that genetic differences between 129/SvEv and C57Bl/6J are key determinants of the severity of defects seen in Kv beta2-null mice and that Kv beta1.1 is a specific although not strain-dependent modifier.  相似文献   

8.
All vertebrate eggs are surrounded by an extracellular matrix. This matrix is known as the zona pellucida in mammals and is critically important for the survival of growing oocytes, successful fertilization and the passage of early embryos through the oviduct. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2 and ZP3), each encoded by a single copy gene. Using targeted mutagenesis in embryonic stem cells, Zp2-null mouse lines have been established. ZP1 and ZP3 proteins continue to be synthesized and form a thin zona matrix in early follicles that is not sustained in pre-ovulatory follicles. The abnormal zona matrix does not affect initial folliculogenesis, but there is a significant decrease in the number of antral stage follicles in ovaries isolated from mice lacking a zona pellucida. Few eggs are detected in the oviduct after stimulation with gonadotropins, and no two-cell embryos are recovered after mating Zp2-null females with normal male mice. The structural defect is more severe than that observed in Zp1-null mice, which have decreased fecundity, but not quite as severe as that observed in Zp3-null mice, which never form a visible zona pellucida and are sterile. Although zona-free oocytes matured and fertilized in vitro can progress to the blastocyst stage, the developmental potential of blastocysts derived from either Zp2- or Zp3-null eggs appears compromised and, after transfer to foster mothers, live births have not been observed. Thus, in addition to its role in fertilization and protection of early embryos, these data are consistent with the zona pellucida maintaining interactions between granulosa cells and oocytes during folliculogenesis that are critical to maximize developmental competence of oocytes.  相似文献   

9.
10.
11.
Urethane is a multi-site animal carcinogen and was classified as "reasonably anticipated to be a human carcinogen." Urethane is a fermentation by-product and found at appreciable levels in alcoholic beverages and foods such as bread and cheese. Recent work in this laboratory demonstrated for the first time that CYP2E1 is the principal enzyme responsible for urethane metabolism. The current studies were undertaken to assess the relationships between CYP2E1-mediated metabolism and urethane-induced genotoxicity and cell proliferation as determined by induction of micronucleated erythrocytes (MN) and expression of Ki-67, respectively, using CYP2E1-null and wild-type mice. Urethane was administered at 0 (vehicle), 1, 10, or 100mg/kg/day (p.o.), 5 days/week for 6 weeks. A significant dose-dependent increase in MN was observed in wild-type mice; however, a slight increase was measured in the MN-polychromatic erythrocytes in CYP2E1-null mice treated with 100mg/kg. A significant increase in the expression of Ki-67 was detected in the livers and the lungs (terminal bronchioles, alveoli, and bronchi) of wild-type mice administered 100mg urethane/kg in comparison to controls. In contrast, CYP2E1-null mice administered this dose exhibited negligible alterations in Ki-67 expression in the livers and lungs compared to controls. Interestingly, while Ki-67 expression in the forestomach decreased in wild-type mice, it increased in CYP2E1-null mice. Subsequent comparative metabolism studies demonstrated that total urethane-derived radioactivity in the plasma, liver, and lung was significantly higher in CYP2E1-null versus wild-type mice and un-metabolized urethane constituted greater than 83% of the radioactivity in CYP2E1-null mice. Un-metabolized urethane was not detectable in the plasma, liver, and lung of wild-type mice. In conclusion, these data demonstrated that CYP2E1-mediated metabolism of urethane, presumably via epoxide formation, is necessary for the induction of genotoxicity, and cell proliferation in the liver and lung of wild-type mice.  相似文献   

12.
Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate   总被引:6,自引:0,他引:6  
Transforming growth factor (TGF)-beta3 is an important contributor to the regulation of medial edge epithelium (MEE) disappearance during palatal fusion. SMAD2 phosphorylation in the MEE has been shown to be directly regulated by TGF-beta3. No phospho-SMAD2 was identified in the MEE in Tgf-beta3-null mutant mice (Tgf-beta3-/-), which was correlated with the persistence of the MEE and failure of palatal fusion. In the present study, the cleft palate phenotype in Tgf-beta3-/- mice was rescued by overexpression of a Smad2 transgene in Keratin 14-synthesizing MEE cells following mating Tgf-beta3 heterozygous mice with Keratin 14 promoter directed Smad2 transgenic mice (K14-Smad2). Success of the rescue could be attributed to the elevated phospho-SMAD2 level in the MEE, demonstrated by two indirect evidences. The rescued palatal fusion in Tgf-beta3-/-/K14-Smad2 mice, however, never proceeded to the junction of primary and secondary palates and the most posterior border of the soft palate, despite phospho-SMAD2 expression in these regions at the same level as in the middle portion of the secondary palate. The K14-Smad2 transgene was unable to restore all the functional outcomes of TGF-beta3. This may indicate an anterior-posterior patterning in the palatal shelves with respect to TGF-beta3 signaling and the mechanism of secondary palatal fusion.  相似文献   

13.
Background information. Osteoclasts are cells specialized for bone resorption and play important roles in bone growth and calcium homoeostasis. Differentiation of osteoclasts involves fusion of bone marrow macrophage mononuclear precursors in response to extracellular signals. A dramatic increase in osteoclast cell volume occurs during osteoclast biogenesis and is believed to be mediated by AQP9 (aquaporin 9), a membrane protein that can rapidly transport water and other small neutral solutes across cell membranes. Results. In the present study we report an increase in expression of AQP9 during differentiation of a mouse macrophage cell line into osteoclasts. Bone marrow macrophages from wild‐type and AQP9‐null mice differentiate into osteoclasts that have similar morphology, contain comparable numbers of nuclei, and digest synthetic bone to the same extent. Bones from wild‐type and AQP9‐null mice contain similar numbers of osteoclasts and have comparable density and structure as measured by X‐ray absorptiometry and microcomputed tomography. Conclusions. Our results confirm that AQP9 expression rises during osteoclast biogenesis, but indicate that AQP9 is not essential for osteoclast function or differentiation under normal physiological conditions.  相似文献   

14.
The prevailing model to explain the formation of topographic projections in the nervous system stipulates that this process is governed by information located within the projecting and targeted structures. In mammals, different thalamic nuclei establish highly ordered projections with specific neocortical domains and the mechanisms controlling the initial topography of these projections remain to be characterized. To address this issue, we examined Ebf1(-/-) embryos in which a subset of thalamic axons does not reach the neocortex. We show that the projections that do form between thalamic nuclei and neocortical domains have a shifted topography, in the absence of regionalization defects in the thalamus or neocortex. This shift is first detected inside the basal ganglia, a structure on the path of thalamic axons, and which develops abnormally in Ebf1(-/-) embryos. A similar shift in the topography of thalamocortical axons inside the basal ganglia and neocortex was observed in Dlx1/2(-/-) embryos, which also have an abnormal basal ganglia development. Furthermore, Dlx1 and Dlx2 are not expressed in the dorsal thalamus or in cortical projections neurons. Thus, our study shows that: (1) different thalamic nuclei do not establish projections independently of each other; (2) a shift in thalamocortical topography can occur in the absence of major regionalization defects in the dorsal thalamus and neocortex; and (3) the basal ganglia may contain decision points for thalamic axons' pathfinding and topographic organization. These observations suggest that the topography of thalamocortical projections is not strictly determined by cues located within the neocortex and may be regulated by the relative positioning of thalamic axons inside the basal ganglia.  相似文献   

15.
16.
One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.KEY WORDS: Glucose, High-fat diet, Insulin, Neuropathy  相似文献   

17.
18.
19.
Taxane-induced peripheral neuropathy (TIPN) is a devastating survivorship issue for many cancer patients. In addition to its impact on quality of life, this toxicity may lead to dose reductions or treatment discontinuation, adversely impacting survival outcomes and leading to health disparities in African Americans (AA). Our lab has previously identified deleterious mutations in SET-Binding Factor 2 (SBF2) that significantly associated with severe TIPN in AA patients. Here, we demonstrate the impact of SBF2 on taxane-induced neuronal damage using an ex vivo model of SBF2 knockdown of induced pluripotent stem cell-derived sensory neurons. Knockdown of SBF2 exacerbated paclitaxel changes to cell viability and neurite outgrowth while attenuating paclitaxel-induced sodium current inhibition. Our studies identified paclitaxel-induced expression changes specific to mature sensory neurons and revealed candidate genes involved in the exacerbation of paclitaxel-induced phenotypes accompanying SBF2 knockdown. Overall, these findings provide ex vivo support for the impact of SBF2 on the development of TIPN and shed light on the potential pathways involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号