首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereocomplexation of poly(L-lactide) (PLLA) with star shaped D-lactic acid (D-LA) oligomers with different architectures and end-groups clearly altered the degradation rate and affected the degradation product patterns. Altogether, nine materials were studied: standard PLLA and eight blends of PLLA with either 30 or 50 wt % of four different D-LA oligomers. The influence of several factors, including temperature, degradation time, and amount and type of D-LA oligomer, on the hydrolytic degradation process was investigated using a fractional factorial experimental design. Stereocomplexes containing star shaped D-LA oligomers with four alcoholic end-groups underwent a rather slow hydrolytic degradation with low release of degradation products. Materials with linear D-LA oligomers exhibited similar mass loss but released higher concentrations of shorter acidic degradation products. Increasing the fraction of D-LA oligomers with a linear structure or with four alcoholic end-groups resulted in slower mass loss due to higher degree of stereocomplexation. The opposite results were obtained after addition of D-LA oligomers with carboxylic chain-ends. These materials demonstrated lower degree of stereocomplexation and larger mass and molar mass loss, and also the release of degradation products increased. Increasing the number of alcoholic chain-ends from four to six decreased the degree of stereocomplexation, leading to faster mass loss. The degree of stereocomplexation and degradation rate were customized by changing the architecture and end-groups of the D-LA oligomers.  相似文献   

2.
While oxidation products of unsaturated fatty acids, for example dicarboxylic acids (hereafter diacids), must form during the use of unglazed ceramic vessels for the processing of animal and plant products, such components have never been observed during studies of absorbed lipids. Their absence from the extractable lipid fraction is presumed to be the result of their loss from potsherds through groundwater leaching. Lipid oxidation products including short-chain dicarboxylic acids, ω-hydroxy acids and longer-chain hydroxy and dihydroxy acids have now been observed as components probably covalently bound into solvent insoluble residues of potsherds recovered from waterlogged deposits. These components were only revealed following alkaline treatment of the insoluble residues. A similar mixture of diacids was observed in high abundance in the free lipid fraction of vessels recovered from an exceptionally arid deposit where groundwater leaching would never have occurred. These results confirm the formation of oxidation and probable polymerization products of unsaturated fatty acids during vessel use and burial.  相似文献   

3.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

4.
This article describes the experimental conditions that should be applied to avoid molecular degradation in size-exclusion chromatography of polymers of ultra-high molar mass (weight-average molar mass M(w)>5000 kg/mol). The applicability of the optimized experimental conditions is demonstrated using polystyrene as a model substance, but also by using polymers of biochemical and biophysical interest, such as polyethylene of ultra-high molar mass, suitable, e.g., for articulating surfaces in joint endoprotheses, and natural rubber, the most important commercial source for products like septa or medical gloves.  相似文献   

5.
This investigation was carried out to develop methods for a reverse-phase, high-performance liquid chromatography analysis of the monocarboxylic and dicarboxylic acids produced by permanganate-periodate oxidation of monoenoic fatty acids. Oxidation reactions were performed using [U-14C]oleic acid and [U-14C]oleic acid methyl ester in order to measure reaction yields and product distributions. The 14C-labeled oxidation products consisted of nearly equal amounts of monocarboxylic and dicarboxylic acid (or dicarboxylic acid monomethyl ester), with few side products (yield greater than 98%). Conversion of the carboxylic acids to phenacyl esters proceeded to completion. HPLC of carboxylic acid phenacyl esters was performed using a C18 column with a linear solvent gradient beginning with acetonitrile/water (1/1) and ending with 100% acetonitrile. Excellent resolution was achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid phenacyl esters. Resolution was also achieved for all components of a mixture of C5 through C12 monocarboxylic acid phenacyl esters and C6 through C11 dicarboxylic acid monomethyl, monophenacyl esters. The resolution obtained by HPLC demonstrates that, for a wide range of monoenoic fatty acids, both products of a permanganate-periodate oxidation can be identified on a single chromatogram. Free fatty acids and fatty acid methyl esters were analyzed with equal success. Neither the oxidation nor the esterification reaction caused detectable hydrolysis of methyl ester. The method is illustrated for free acids and methyl esters of 14:1 (cis-9), 16:1 (cis-9), 18:1 (cis-6), 18:1 (cis-9), and 18:1 (cis-11).  相似文献   

6.
A series or γ- and δ-lactones could be found in the thermal oxidative products of normal saturated acids, aldehydes, and alcohols (C9, C10, and C12, respectively) heated at 180°C in the presence of 0.1% KMnO4. Their lactones were identified by gas chromatography, infrared spectroscopy, and mass spectroscopy. And they could be detected also in the volatile compounds occurred by heating of C10 acid, aldehyde, and alcohol mixed with pork fat. So it was expected that lactones in meat fat flavor described in the earlier papers could be secondary products converted from saturated acids, aldehydes, and alcohols formed by oxidative degradation of meat fats. This process was presumed to be one of the mechanisms of the lactone formation.

It was discussed that lactones might be derived through mono or dihydroperoxides of acids, aldehydes, and alcohols.  相似文献   

7.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently described metabolic disorder of fatty acid oxidation in humans. Acute episodes are usually characterized biochemically by the appearance of nonketotic dicarboxylic aciduria. In addition, other abnormal metabolites, such as suberylglycine, n-hexanoylglycine, 3-phenylpropionylglycine, and octanoylcarnitine, are excreted in the urine. Urinary organic acids were determined using dual capillary column gas-liquid chromatography and gas-liquid chromatography/mass spectrometry. In three cases of MCAD deficiency we observed a disproportionate increase in the excretion of unsaturated dicarboxylic acids compared to either fasting control children with expected ketotic dicarboxylic aciduria or patients with nonketotic dicarboxylic aciduria not associated with MCAD deficiency. The most significant increase was in the urinary excretion of cis-4-decendioic acid. Additionally, the urinary excretions of cis-3-octenedioic and cis-5-decenedioic acids were slightly decreased whereas the excretion of cis-5-dodecenedioic acid was increased. These data are consistent with the notion that as a result of MCAD deficiency the metabolic oxidation of unsaturated fatty acids such as linoleate and oleate is inhibited more than saturated fatty acids.  相似文献   

8.
The microsomal dicarboxylyl-CoA synthetase.   总被引:6,自引:2,他引:4       下载免费PDF全文
Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo.  相似文献   

9.
A combined gas chromatographic-mass spectrometric method (selected ion monitoring) to determine C6-C10-dicarboxylic acids in liver and kidney tissue is reported. Alterations in tissue concentrations of the dicarboxylic acids were reflected in urinary excretions, i.e., diabetic rats with 'ketotic dicarboxylic aciduria' had corresponding elevated concentrations of short-chain dicarboxylic acids in liver and kidney tissue. Stimulation of the enzymes of fatty acid oxidation by clofibrate was, as a sole event, not sufficient to cause elevated tissue concentrations of dicarboxylic acids, nor did it result in dicarboxylic aciduria, probably because of a relative lack in substrate (fatty acids) compared to the diabetic ketotic state, where lipolysis is increased. These results strongly indicate that 'ketotic dicarboxylic aciduria' parallels the activity of the lipid metabolism at cellular level, and that it is not just a matter of renal handling.  相似文献   

10.
By its UV spectrum lavendofuseomycin, a macrolide pentaene antibiotic, was referred to the subgroup of adeopentaenes with the spectral symmetrical patterns. The antibiotic contains a carbonyl, the end and 4 isolated double bonds and hemiketal ring. The molecule is lacking sugar. After the hydroantibiotic oxidation 2-methylhexadecane dicarboxylic and 4'-methyloctanoic acids were isolated. The antibiotic carbon skeleton was asserted on the basis of the mass spectral analysis of the products of the antibiotic complete reduction and the products of the antibiotic retroaldol cleavage. Determination of the position of the isolated double bonds, localization of chromophore, oxygen functions and the position of the amino group in the molecule resulted from investigation of the antibiotic azonolysis products.  相似文献   

11.
The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.  相似文献   

12.
Polyunsaturated fatty acids can be omega-oxidized to dicarboxylic polyunsaturated fatty acids (DC-PUFA), bioactive compounds which cause vasodilatation and activation of PPARalpha and gamma. DC-PUFA can be shortened by beta-oxidation, and to determine whether mitochondria and/or peroxisomes are responsible for this degradation 20-carboxy-[1-(14)C]-eicosatetraenoic acid (20-COOH-AA) was synthesized and given to hepatocytes from mouse models with peroxisomal dysfunctions. In contrast to wild type cells, hepatocytes from mice with liver-selective elimination of peroxisomes, due to Pex5p deficiency, failed to produce (14)CO(2) and labeled acid-soluble oxidation products, indicating that peroxisomes are involved in the degradation of 20-COOH-AA. Subsequently, the oxidation of 20-COOH-AA was analyzed in hepatocytes lacking multifunctional protein 1 (MFP1) or MFP2, key enzymes of the peroxisomal beta-oxidation. Degradation of 20-COOH-AA was partially impaired in MFP1, but not in MFP2 knockout hepatocytes. Taken together, peroxisomes and not mitochondria are the site of beta-oxidation of DC-PUFA, and MFP1 is involved in this process.  相似文献   

13.
Candida cloacae cells oxidize long-chain fatty acids to their corresponding dicarboxylic acids (dioic acids) at rates dependent on their chain length and degree of saturation. This is despite the well-known toxicity of the fatty acids. Among the saturated substrates, the oxidation is limited to lauric acid (C12). The addition of pristane (5% v/v), which acts as an inert carrier for the poorly water-soluble substrate, boosts the oxidation of lauric acid to a rate that is comparable to that of dodecane. When dissolved in pristane, myristic (C14) and palmitic (C16) acids are effective carbon sources for C. cloacae, but dioic acid production is very low. Media glucose concentration and pH also influence cell growth and productivity. After the glucose is depleted, oxidation is optimal at a low pH. A two-phase (pristane/water) reaction was tested in a 2-l stirred tank bioreactor in which growth and oxidation were separated. A 50% w/w conversion of lauric acid (10 g/l) to dodecanedioic acid was achieved. The bioreactor also alleviated poor mass transfer characteristics experienced in shake flasks.  相似文献   

14.
Intravenous administration of dodecanedioate (or hexadecanedioate) to anaesthetized rats resulted in the urinary excretion of medium-chain dicarboxylic acids (adipic, suberic and sebacic acids). In control animals, the recovery of infused dodecanedioate in the form of urinary medium-chain dicarboxylic acids corresponded to 30% of the infused dose (22 mumol/100 g body mass). This excretion was markedly increased in riboflavin-deficient rats (75% of the infused dose) while it was severely decreased in clofibrate-treated animals (less than 5%). The initial velocity of this process was similar in both control and riboflavin-deficient rats. In control animals, halving the infused dose of dodecanedioate to 11 mumol/100 g body mass resulted in a halving of the initial rate of the urinary appearance of medium-chain dicarboxylates, while doubling the amount of dicarboxylate administered to 44 mumol/100 g body mass did not further modify this velocity, but rather prolonged the duration of the excretion of the resulting products. In riboflavin-deficient and clofibrate-treated rats, the hepatic peroxisomal dicarboxylyl-CoA beta-oxidation activity measured as dicarboxylyl-CoA H2O2-generating oxidase and cyanide-insensitive dicarboxylyl-CoA-dependent NAD+ reduction was increased about threefold and tenfold, respectively. Dicarboxylyl-CoA synthetase activity was normal in the clofibrate-treated rat livers but was increased more than tenfold in the livers from the riboflavin-deficient animals. This work provides evidence that in the rat both mitochondria and peroxisomes are involved in the catabolism of dicarboxylates.  相似文献   

15.
The oxidations of dichlorodihydrofluorescein and dihydrorhodamine by peroxynitrite are zero-order in the indicator between pH 3 and 10. The yield of the oxidized products, dichlorofluorescein and rhodamine, significantly increased at pH values>7, and the maximal molar yields were 0.47 +/- 0.04 mol rhodamine and 0.54 +/- 0.06 mol, dichlorofluorescein per mol peroxynitrite at pH 8.5. The increase in yield of oxidized products as a function of pH indicates that the peroxynitrite anion may form an adduct with the indicator, followed by protonation and oxidation of the indicator. Carbon dioxide decreased the yield of fluorescent products to about 5%, relative to peroxynitrite, and the rate of product formation is again zero-order in the indicator. Given this yield, it is proposed that nitrogen dioxide and trioxocarbonate (*1-) are the reactive species that oxidize the indicators.  相似文献   

16.
Pristane, a highly branched hydrocarbon that also contains iso-branched termini, was used as a substrate for several alkane-metabolizing bacteria. Rhodococcus ruber and Mycobacterium neoaurum were able to utilize pristane for growth effectively. The intermediates produced by these bacteria during incubation with pristane were analyzed by gas chromatography (GC) and gas chromatography/mass spectra (GC/MS). The products revealed as products of 4-methyl pentanoic acid; methyl butanedioic acid; 2-methyl pentadioic acid; methyl propanedioic acid; 4-methyl heptanedioic acid; and 2,6,10,14-tetramethyl-pentadecan-3-one were detected in M. neoaurum cultures. In R. ruber, methyl butanedioic acid; 2-methyl pentadioic acid; 4,8-dimethylnonanoic acid, 4-methyl heptanedioic acid; 2,6,10-trimethylundecanoic acid; 3,7-dimethyl decanedioic acid; and 2,6,10,14-tetramethyl-pentadecan-3-one were detected. The occurrence of these intermediates showed that pristane could be catabolized not only via mono- but also by a di-terminal oxidation pathway. Furthermore, the presence of 2,6,10,14-tetramethyl-pentadecan-3-one; 3,7-dimethyldecandioate; and 2-methylbutandioate established a third pathway initiated by sub-terminal oxidation at the third carbon atom of pristane. Novel intermediates detected suggest simultaneous sub-terminal and di-terminal oxidation pathways.  相似文献   

17.
S J Jin  K Y Tserng 《Biochemistry》1990,29(37):8540-8547
Previously, we [Jin, S.-J., & Tserng, K.-Y. (1989) J. Lipid Res. 30, 1611-1619] reported the structures of urinary octenedioic acids occurring in patients with dicarboxylic aciduria. We proposed that these unsaturated octenedioic acids were derived from the oxidation of oleic and linoleic acids. By comparison with synthetic decenedioic acids, we have further identified the higher homologues of unsaturated dicarboxylic acids in urine as cis-5-decenedioic (c5DC10), cis-4-decenedioic (c4DC10), cis-3-decenedioic (cDC10), trans-4-decenedioic, trans-3-decenedioic, cis-5-dodecenedioic (c5DC12), cis-3-dodecenedioic (c3DC12), and trans-3-dodecenedioic acids. The presence of these isomeric decenedioic and dodecenedioic acids in urine is consistent with the proposed metabolic origins. In vitro studies using synthetic unsaturated fatty acids and rat liver homogenates support the proposed metabolic origins of these acids. The following metabolic sequences are proposed for metabolites derived from oleic acid: (route A) cis-5-tetradecenoic acid----cis-5-tetradecenedioic acid----c5DC12----c5DC10----suberic (DC8)----adipic (DC6); (route B) cis-3-dodecenoic acid----c3DC12----c3DC10----c3DC8 (cis-3-octenedioic)----DC6. A similar route is derived from linoleic acid: cis-4-decenoic acid----c4DC10----c4DC8 (cis-4-octenedioic)----DC6. The presence of a double bond at position 3, 4, or 5 of fatty acid appears to be rate limiting for further beta-oxidation; therefore, metabolic products with cis-3, cis-4, or cis-5 structure accumulate. Urinary DC8 and DC6 are derived partially from the metabolic degradation of these unsaturated dicarboxylic acids.  相似文献   

18.
Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon–i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning persisted through a 6 month incubation suggesting that fire severity had first order control on BCA and lignin composition. Using original and published BCA data from soils, sediments, char, and interfering compounds we found that BTC:Lig and BTC2:BTC were able to distinguish Py-OC from compounds such as humic materials, tannins, etc. The BCAs released by the CuO oxidation procedure increase the functionality of this method in order to examine the relative contribution of Py-OC in geochemical samples.  相似文献   

19.
Candida bombicola was grown using a variety of lipophilic carbon substrates. Most of the hydrocarbon and carboxylic acid substrates resulted in a mixture of sophorolipids consisting of free acids and the more desirable lactones. The ratio of diacylated lactone to free acid in these mixtures was a maximum when produced using hexadecane and heptadecane. All of the other lipophilic substrates resulted in significant amounts of free acids being produced. These lactone products were unique in that they precipitated as crystals, which were easily separated from the culture medium. All of the other products were isolated as oils as is usually reported in the literature. Finally, the amounts of these crystals recovered were significantly higher than those observed for any of the oily products. It was possible to determine the degree of direct incorporation of the lipophilic substrates into the sophorolipids for a homologous series of alkanes. The amount of direct incorporation increased with increasing chain length to a maximum for pentadecane, hexadecane and heptadecane. As the length of the alkane substrate increased further, the amount of direct incorporation then decreased until there was no apparent incorporation for eicosane.  相似文献   

20.
Branched- and straight-chain alkanes are metabolized by Brevibacterium erythrogenes by means of two distinct pathways. Normal alkanes (e.g., n-pentadecane) are degraded, after terminal oxidation, by the beta-oxidation system operational in fatty acid catabolism. Branched alkanes like pristane (2,6,10,14-tetramethylpentadecane) and 2-methylundecane are degraded as dicarboxylic acids, which also undergo beta-oxidation. Pristane-derived intermediates are observed to accumulate, with time, as a series of dicarboxylic acids. This dicarboxylic acid pathway is not observed in the presence of normal alkanes. Release of (14)CO(2) from [1-(14)C]pristane is delayed, or entirely inhibited, in the presence of n-hexadecane, whereas CO(2) release from n-hexadecane remains unaffected. These results suggest an inducible dicarboxylic acid pathway for degradation of branched-chain alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号