首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

2.
Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.  相似文献   

3.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

4.
The divalent metal transporter (DMT1, Slc11a2) is an important molecule for intestinal iron absorption. In the Belgrade (b/b) rat, the DMT1 G185R mutation markedly decreases intestinal iron absorption. We used b/b rats as a model to examine the genes that could be compensatory for decreased iron absorption. When tissue hypoxia was assayed by detecting pimonidazole HCl adducts, the b/b liver and intestine exhibited more adducts than the +/+ rats, suggesting that hypoxia might signal altered gene expression. Total RNA in the crypt-villus bottom (C-pole) and villus top (V-pole) of +/+, b/b, and iron-fed b/b rats was isolated for gene array analyses. In addition, hepatic hepcidin and intestinal hypoxia-inducible factor-α (Hifα) expression were examined. The results showed that expression of hepatic hepcidin was significantly decreased and intestinal Hif2α was significantly increased in b/b and iron-fed b/b than +/+ rats. In b/b rats, the expression of Tfrc mRNA in the C-pole and of DMT1, Dcytb, FPN1, Heph, Hmox1, and ZIP14 mRNAs in the V-pole were markedly enhanced with increases occurring even in the C-pole. After iron feeding, the increased expression found in b/b rats persisted, except for Heph and ZIP14, which returned to normal levels. Thus in b/b rats depressed liver hepcidin production and activated intestinal Hif2α starting at the C-pole resulted in increasing expression of iron transport genes, including DMT1 G185R, in an attempt to compensate for the anemia in Belgrade rats.  相似文献   

5.
Hereditary hemochromatosis type 3 is an iron (Fe)-overload disorder caused by mutations in transferrin receptor 2 (TfR2). TfR2 is expressed highly in the liver and regulates Fe metabolism. The aim of this study was to investigate duodenal Fe absorption and hepatic Fe uptake in a TfR2 (Y245X) mutant mouse model of hereditary hemochromatosis type 3. Duodenal Fe absorption and hepatic Fe uptake were measured in vivo by 59Fe-labeled ascorbate in TfR2 mutant mice, wild-type mice, and Fe-loaded wild-type mice (2% dietary carbonyl Fe). Gene expression was measured by real-time RT-PCR. Liver nonheme Fe concentration increased progressively with age in TfR2 mutant mice compared with wild-type mice. Fe absorption (both duodenal Fe uptake and transfer) was increased in TfR2 mutant mice compared with wild-type mice. Likewise, expression of genes participating in duodenal Fe uptake (Dcytb, DMT1) and transfer (ferroportin) were increased in TfR2 mutant mice. Nearly all of the absorbed Fe was taken up rapidly by the liver. Despite hepatic Fe loading, hepcidin expression was decreased in TfR2 mutant mice compared with wild-type mice. Even when compared with Fe-loaded wild-type mice, TfR2 mutant mice had increased Fe absorption, increased duodenal Fe transport gene expression, increased liver Fe uptake, and decreased liver hepcidin expression. In conclusion, despite systemic Fe loading, Fe absorption and liver Fe uptake were increased in TfR2 mutant mice in association with decreased expression of hepcidin. These findings support a model in which TfR2 is a sensor of Fe status and regulates duodenal Fe absorption and liver Fe uptake.  相似文献   

6.
Aceruloplasminemia is an autosomal recessive disorder caused by mutations in the ceruloplasmin (CP) gene, and is characterized by a unique combination of neurovisceral iron overload and iron deficiency anemia. We generated CP-deficient (CP(-/-)) mice to investigate the functional involvement of CP in iron metabolism. The mice showed a marked iron overload in the liver and mild iron deficiency anemia. We examined the expression of iron-metabolism genes in the duodenum and liver using TaqMan RT-PCR. The divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1), and hephaestin (HEPH) genes were not up-regulated in the duodenum from CP(-/-) mice. These data suggest that the mechanism of hepatic iron overload in aceruloplasminemia is quite different from that in hemochromatoses and atransferrinemia. In the liver, CP(-/-) mice showed no increase of gene expression for DMT1 and transferrin receptors (TFR and TFR2), indicating that none of the known pathways of iron uptake is activated in hepatocytes of CP(-/-) mice. This result supports the hypothesis that CP mainly acts to release iron from cells in the liver.  相似文献   

7.
Cytokines are implicated in the anaemia of chronic disease by reducing erythropoiesis and increasing iron sequestration in the reticuloendotheial system. However, the effect of cytokines, in particular TNFalpha (tumour necrosis factor alpha), on small bowel iron uptake and iron-transporter expression remains unclear. In the present study, we subjected CD1 male mice to intraperitoneal injection with TNFalpha (10 ng/mouse) and then examined the expression and localization of DMT1 (divalent metal transporter 1), IREG1 (iron-regulated protein 1) and ferritin in duodenum. Liver and spleen samples were used to determine hepcidin mRNA expression. Changes in serum iron and iron loading of duodenum, spleen and liver were also determined. We found a significant (P<0.05) fall in serum iron 3 h post-TNFalpha exposure. This was coincident with increased iron deposition in the spleen. After 24 h of exposure, there was a significant decrease in duodenal iron transfer (P<0.05) coincident with increased enterocyte ferritin expression (P<0.05) and re-localization of IREG1 from the basolateral enterocyte membrane. Hepatic hepcidin mRNA levels remained unchanged, whereas splenic hepcidin mRNA expression was reduced at 24 h. In conclusion, we provide evidence that TNFalpha may contribute to anaemia of chronic disease by iron sequestration in the spleen and by reduced duodenal iron transfer, which seems to be due to increased enterocyte iron binding by ferritin and a loss of IREG1 function. These observations were independent of hepcidin mRNA levels.  相似文献   

8.
The anemia of chronic disease (also called anemia of inflammation) is an acquired disorder of iron homeostasis associated with infection, malignancy, organ failure, trauma, or other causes of inflammation. It is now widely accepted that induction of hepcidin expression in response to inflammation might explain the characteristic hypoferremia associated with this condition. To determine the role of hepcidin in acute inflammation and the regulation of its receptor, the iron exporter, ferroportin, wild-type, heterozygote and hepcidin knockout mice (Hepc−/−) were challenged with sublethal doses of lipopolysaccharide (LPS). Six hours after injection, ferroportin mRNA and protein levels were assessed in the duodenum and the spleen and plasma iron was determined. Our results demonstrate that hepcidin is crucial, though not the sole mediator of LPS-mediated acute hypoferremia, and also that hepcidin major contribution relies on decreased ferroportin protein levels found in the spleen. Furthermore, we establish that LPS-mediated repression of the membrane iron transporter DMT1 and oxidoreductase Dcytb in the duodenum is independent of hepcidin. Finally, our results in the hepc+/− mice indicate that elevated hepcidin gene expression is not a prerequisite for the setting of hypoferremia during early inflammatory response, and they highlight the intimate crosstalk between inflammatory and iron-responsive pathways for the control of hepcidin.  相似文献   

9.
目的:观察肥胖对小鼠十二指肠二价金属离子转运体(divalent metal transporter 1,DMT1)mRNA、膜铁转运蛋白(ferroportin1,FPN1)mRNA及蛋白表达的变化,探讨肥胖影响铁吸收的机制。方法 C57BL/6J小鼠随机分为正常对照组和肥胖模型组,每组6只,通过喂养高脂饲料喂养建立肥胖模型,对照组采用普通饲料饲养,实验干预期14周。建模完成后,采用实时荧光定量PCR方法检测小鼠十二指肠DMT1、FPN1 mRNA 的表达,用Western blot检测小鼠十二指肠FPN1蛋白表达。结果与对照组小鼠相比,肥胖模型组小鼠十二指肠DMT1、FPN1 mRNA表达以及FPN1蛋白表达水平降低,差异具有统计学意义( P <0.05)。结论肥胖会下调机体十二指肠DMT1、FPN1的表达,导致铁吸收不良,为进一步研究肥胖引起铁缺乏机制提供理论和实验依据。  相似文献   

10.
Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis   总被引:8,自引:0,他引:8  
Hepcidin, a key regulator of iron metabolism, decreases intestinal absorption of iron and its release from macrophages. Iron, anemia, hypoxia, and inflammation were reported to influence hepcidin expression. To investigate regulation of the expression of hepcidin and other iron-related genes, we manipulated erythropoietic activity in mice. Erythropoiesis was inhibited by irradiation or posttransfusion polycythemia and stimulated by phenylhydrazine administration and erythropoietin. Gene expression of hepcidin and other iron-related genes (hemojuvelin, DMT1, ferroportin, transferrin receptors, ferritin) in the liver was measured by the real-time polymerase chain reaction. Hepcidin expression increased despite severe anemia when hematopoiesis was inhibited by irradiation. Suppression of erythropoiesis by posttransfusion polycythemia or irradiation also increased hepcidin mRNA levels. Compensated hemolysis induced by repeated phenylhydrazine administration did not change hepcidin expression. The decrease caused by exogenous erythropoeitin was blocked by postirradiation bone marrow suppression. The hemolysis and anemia decrease hepcidin expression only when erythropoiesis is functional; on the other hand, if erythropoiesis is blocked, even severe anemia does not lead to a decrease of hepcidin expression, which is indeed increased. We propose that hepcidin is exclusively sensitive to iron utilization for erythropoiesis and hepatocyte iron balance, and these changes are not sensed by other genes involved in the control of iron metabolism in the liver.  相似文献   

11.
Molecular evidence for the role of a ferric reductase in iron transport   总被引:1,自引:0,他引:1  
Duodenal cytochrome b (Dcytb) is a haem protein similar to the cytochrome b561 protein family. Dcytb is highly expressed in duodenal brush-border membrane and is implicated in dietary iron absorption by reducing dietary ferric iron to the ferrous form for transport via Nramp2/DCT1 (divalent-cation transporter 1)/DMT1 (divalent metal-transporter 1). The protein is expressed in other tissues and may account for ferric reductase activity at other sites in the body.  相似文献   

12.
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non‐heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post‐bulbar, (b) 1–2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real‐time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position‐dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non‐heme iron.  相似文献   

13.
Despite a lack of transferrin, hypotransferrinemic (Hp) mice demonstrate an accumulation of iron in peripheral organs including the lungs. One potential candidate for such transferrin-independent uptake of iron is divalent metal transporter-1 (DMT1), an established iron transporter. We tested the hypothesis that increased concentrations of iron in the lungs of Hp mice are associated with elevations in DMT1 expression. With the use of inductively coupled plasma emission spectroscopy, measurements of nonheme iron confirmed significantly elevated concentrations in the lung tissue of Hp mice relative to the wild-type mice. Western blot analyses for the expression of two isoforms of DMT1 in the Hp mice relative to the wild-type animals demonstrated an elevation for the isoform that lacks an iron-responsive element (IRE) with significant decrements in the expression of +IRE DMT1. With the use of immunohistochemistry, -IRE DMT1 was localized to both airway epithelial cells and alveolar macrophages in wild-type mice. Staining appeared increased in both types of cells in the Hp mice. Elevated concentrations of both tissue nonheme iron and expression of -IRE DMT1 in the Hp mice were associated with increased quantities of -IRE mRNA. There was no difference between wild-type and homozygotic Hp mice in the amount of mRNA for DMT1 +IRE. We conclude that differences between Hp and wild-type mice in nonheme iron concentrations were accompanied by increases in the expression of -IRE DMT1. Increased expression of -IRE DMT1 in the lungs of the Hp mice could be responsible for elevated concentrations of the metal in these tissues.  相似文献   

14.
Previous studies revealed novel genetic changes in the duodenal mucosa of iron-deprived rats during postnatal development. These observations are now extended to compare the genetic response to iron deficiency in the duodenum versus jejunum of 12-wk-old rats. cRNA samples were prepared from the duodenal and jejunal mucosa of three groups each of control and iron-deficient rats and hybridized with RAE 230A and 230B gene chips (Affymetrix). Stringent data reduction strategies were employed. Results showed that several genes were similarly induced in both gut segments, including DMT1, Dcytb, transferrin receptor 1, heme oxygenase 1, metallothionein, the Menkes copper ATPase (ATP7A), tripartitie motif protein 27, and the sodium-dependent vitamin C transporter. However, a subset of genes showed regulation in only one or the other gut segment. In duodenum only, gastrokine 1, trefoil factor 1 and claudin 2 were induced by iron-deficiency. Other genes previously identified were only regulated in the duodenum. Overall, these studies demonstrate similarities and distinct differences in the genetic response to iron deprivation in the duodenum versus jejunum and provide evidence that more distal gut segments also may play a role in increasing iron absorption in iron-deficiency anemia.  相似文献   

15.
Iron absorption by the duodenal mucosa is initiated by uptake of ferrous Fe(II) iron across the brush border membrane and culminates in transfer of the metal across the basolateral membrane to the portal vein circulation by an unknown mechanism. We describe here the isolation and characterization of a novel cDNA (Ireg1) encoding a duodenal protein that is localized to the basolateral membrane of polarized epithelial cells. Ireg1 mRNA and protein expression are increased under conditions of increased iron absorption, and the 5' UTR of the Ireg1 mRNA contains a functional iron-responsive element (IRE). IREG1 stimulates iron efflux following expression in Xenopus oocytes. We conclude that IREG1 represents the long-sought duodenal iron export protein and is upregulated in the iron overload disease, hereditary hemochromatosis.  相似文献   

16.
Hepcidin is an anti-microbial peptide predicted to be involved in the regulation of intestinal iron absorption. We have examined the relationship between the expression of hepcidin in the liver and the expression of the iron-transport molecules divalent-metal transporter 1, duodenal cytochrome b, hephaestin and Ireg1 in the duodenum of rats switched from an iron-replete to an iron-deficient diet or treated to induce an acute phase response. In each case, elevated hepcidin expression correlated with reduced iron absorption and depressed levels of iron-transport molecules. These data are consistent with hepcidin playing a role as a negative regulator of intestinal iron absorption.  相似文献   

17.
Intestinal iron absorption is extremely high in neonatal mammals but falls rapidly to adult levels following weaning. The aim of this study was to investigate the molecular basis of this elevated neonatal absorption using the rat as an experimental model. RNA was extracted from various sections of the intestine of 10-, 15-, 20-, 25-, and 300-day-old rats and the expression of the genes encoding DMT1 (Slc11a2), ferroportin (Slc40a1), Cybrd1 (Cybrd1), and hephaestin (heph) determined by ribonuclease protection assay. The hepatic expression of Hamp was studied at the same ages. Iron absorption was examined by following (59)Fe uptake in both whole animals and in isolated intestinal loops. Slc11a2, Slc40a1, and Cybrd1 mRNAs were highly expressed in all regions of the small intestine and colon studied in suckling rats. However, after weaning, when iron absorption declined significantly, strong expression was retained only in the duodenum. No change in hephaestin mRNA occurred in any part of the digestive tract. In the distal small intestine and colon, Slc40a1 expression most closely followed the change in absorption that occurred after weaning. Hamp expression was low during the neonatal period and increased to adult levels following weaning. Our results suggest that the distal small intestine and colon contribute significantly to the high intestinal iron absorption seen in neonatal animals and that this reflects increased expression of the iron transporters, particularly Slc40a1.  相似文献   

18.
Expression studies of neogenin and its ligand hemojuvelin in mouse tissues.   总被引:3,自引:0,他引:3  
Juvenile hemochromatosis is a severe hereditary iron overload disease caused by mutations in the HJV (hemojuvelin) and HAMP (hepcidin) genes. Hepcidin is an important iron regulatory hormone, and hemojuvelin may regulate hepcidin synthesis via the multifunctional membrane receptor neogenin. We explored the expression of murine hemojuvelin and neogenin mRNAs and protein. Real-time RT-PCR analysis of 18 tissues from male and female mice was performed to examine the mRNA expression profiles. To further study protein expression and localization we used immunohistochemistry on several tissues from three mouse strains. Mouse Neo1 mRNA was detectable in the 18 tissues tested, the highest signals being evident in the ovary, uterus, and testis. Neogenin protein was observed in the brain, skeletal muscle, heart, liver, stomach, duodenum, ileum, colon, renal cortex, lung, testis, ovary, oviduct, and uterus. The spleen, thymus, and pancreas were negative for neogenin. The highest signals for Hjv mRNA were detectable in the skeletal muscle, heart, esophagus, and liver. The results indicate that Neo1 mRNA is widely expressed in both male and female mouse tissues with the highest signals detected in the reproductive system. Moreover, Hjv and Neo1 mRNAs are simultaneously expressed in skeletal muscle, heart, esophagus, and liver.  相似文献   

19.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.  相似文献   

20.
Human hereditary hemochromatosis is a disorder of iron homeostasis characterized by increased absorption of iron and its deposition in parenchymal organs. The maintenance of iron homeostasis is regulated by molecules involved in the absorption, transport, storage and redox of iron. The potential of hematopoietic stem cell therapy for liver diseases has been studied in some experimental animal models. Our objective was to evaluate the effect of bone marrow transplantation from wild type mice on the status of iron overload in Hfe knockout hemochromatotic mice (Hfe(-/-)). The transplanted cells were detected in the liver (11% of the total cells) and characterized as hepatocytes and myofibroblasts. They were also detected in the duodenum and characterized as myofibroblasts. The iron content in the Hfe(-/-) mice descended 2.9-fold in the liver and 2.4-fold in the duodenum 6 months after transplantation. Non-significant changes of relative mRNA abundance of genes of iron metabolism were observed in the liver and duodenum of Hfe(-/-) transplanted mice. At 6 months after transplantation the proportion of Hfe mRNA in Hfe(-/-) mice reached 3.8% of the levels in wild type mice in the liver and 1.6% in the duodenum. In conclusion, adult stem cells from bone marrow transplant were able to differentiate into hepatocytes and myofibroblasts in hemochromatotic mice. Bone marrow transplantation assisted in reducing the iron overload in this murine model of hemochromatosis. These findings might contribute to the knowledge of pathways involved in the regulatory system of iron homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号