首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that in the liver, transferrin (TF) receptors are limited to endothelial cells, and hepatocytes and Kupffer cells do not have TF receptors. To study the transport of iron into hepatocytes, we fractionated liver cell suspensions into endothelium and hepatocyte fractions. At 4 degrees C liver (but not umbilical cord) endothelium bound Fe-TF with a saturable kinetics. At 37 degrees C, the endothelial uptake was followed by its gradual release. Transendothelial transport of TF was visually demonstrated by perfusion of liver using colloidal gold-labeled TF. The released Fe-TF acquired the potential for binding to fresh target hepatocytes and binding was not inhibited by excess cold TF but was inhibitable by asialofetuin, suggesting galactosyl receptors and not TF receptors as a recognition mechanism. Isoelectrofocusing of the supernate after preincubation for 90 min at 37 degrees C with endothelial cells, demonstrated the presence of a newly generated band which co-migrated with asialotransferrin. We conclude that Fe-TF is initially removed by liver endothelium where it is modified probably by desialation to expose the galactosyl residues of the glycoproteins. The modified molecule is subsequently released and recognized by hepatocytes through a TF receptor-independent mechanism which may involve galactosyl receptors of hepatocytes. The findings indicate a key role for endothelium in the transport of Fe-TF into the liver and may suggest a physiological function for galactosyl receptors on hepatocyte surface.  相似文献   

2.
A metalloproteinase inhibitor present in human rheumatoid synovial fluid was purified by a combination of heparin-Sepharose chromatography, concanavalin A-Sepharose chromatography, ion-exchange chromatography and gel filtration. The Mr of the purified inhibitor was 28000 by SDS/polyacrylamide-gel electrophoresis and 30000 by gel filtration. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase and proteoglycanase, but not thermolysin or bacterial collagenase. The serine proteinase trypsin was not inhibited. The inhibitory activity was lost after treatment with trypsin (0.5 micrograms/ml) at 37 degrees C for 30 min, 4-aminophenylmercuric acetate (1 mM) at 37 degrees C for 3 h, after incubation for 30 min at 90 degrees C and by reduction and alkylation. These properties suggest that the inhibitor closely resembles the tissue inhibitor of metalloproteinases ('TIMP') recently purified from connective-tissue culture medium.  相似文献   

3.
1. Incubation of intact epididymal adipose tissue from fed rats at 37 degrees in an albumin solution at pH7.4 in vitro results in rapid loss of clearing-factor lipase activity until a low activity, stable to prolonged incubation, is attained. The clearing-factor lipase activity of intact tissue from starved rats, which is initially much less than that of tissue from fed rats, is mainly stable to incubation at 37 degrees . 2. Much of the clearing-factor lipase activity of intact epididymal adipose tissue from fed rats is inactivated by collagenase. The enzyme activity of intact tissue from starved rats is not inactivated by collagenase. 3. The clearing-factor lipase activity of fat cells isolated from the epididymal adipose tissue of fed rats is stable to prolonged incubation at 37 degrees . It represents only a small proportion of the total activity of the intact tissue. In starved rats, the isolated fat cells contain a much higher proportion of the activity of the intact tissue. Their activity is also stable at 37 degrees . 4. Incubation of isolated fat cells in a serum-based medium leads to a progressive rise in clearing-factor lipase activity. Actinomycin increases the extent of this rise in activity. No rise in clearing-factor lipase activity occurs when stromal-vascular cells isolated from epididymal adipose tissue are incubated in the medium. 5. The findings indicate that less than 20% of the activity of intact adipose tissue from fed rats is retained when fat cells are isolated from the tissue by collagenase treatment. The activity that is lost could be that which normally functions in the uptake of triglyceride fatty acids by the tissue.  相似文献   

4.
The rat hepatic lectins, galactose- and N-acetylgalactosamine-binding proteins found on the hepatocyte cell surface, mediate adhesion of isolated primary rat hepatocytes to artificial galactose-derivatized polyacrylamide gels. Biochemical and immunohistochemical techniques were used to examine the topographical redistribution of the rat hepatic lectins in response to galactose-mediated cell adhesion. Hepatocytes isolated from rat liver by collagenase perfusion had an average of 7 x 10(5) cell surface lectin molecules per cell, representing 30-50% of the total lectin molecules per cell, the remainder residing in intracellular pools. Hepatocytes incubated on galactose-derivatized surfaces, whether at 0-4 degrees C or 37 degrees C, rapidly lost greater than 80% of their accessible cell surface lectin binding sites into an adhesive patch of characteristic morphology. The kinetics of rat hepatic lectin disappearance were used to estimate a lateral diffusion coefficient greater than 9 x 10(-9) cm2/s at 37 degrees C, suggesting rapid and unimpeded lectin diffusion in the plane of the membrane. Indirect immunofluorescence labeling of adherent cells using antihepatic lectin antibody revealed a structured ring of receptors surrounding an area of exclusion (patch) of reproducible size and shape which represented approximately 8% of the hepatocyte cell surface. Notably, adherent cells, which had lost greater than 80% of their accessible surface binding sites, still endocytosed soluble galactose-terminated radioligand at greater than 50% of the rate of nonadherent control cells. No net movement of rat hepatic lectin from intracellular pools to the cell surface was found on cells recovered after adhesion to galactose-derivatized surfaces at 37 degrees C, suggesting that the physical size and/or lectin density of the patch was restricted by kinetic or topological constraints.  相似文献   

5.
A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs.  相似文献   

6.
Purification of rabbit bone inhibitor of collagenase.   总被引:27,自引:7,他引:20       下载免费PDF全文
1. Rabbit bones in tissue culture synthesize an inhibitor of collagenase during the first 4 days of culture. 2. The inhibitor was purified by a combination of gel filtration, concanavalin A--Sepharose chromatography, ion-exchange chromatography and zinc-chelate affinity chromatography. 3. The purified inhibitor migrated as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had a mol.wt. of 28000. 4. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase, neutral proteinase III (proteoglycanase), human leucocyte collagenase and gelatinase, but not thermolysin or bacterial collagenase. The serine proteinases plasmin and trypsin were not inhibited. 5. The inhibitor interacted with purified rabbit bone collagenase with 1:1 stoichiometry. 6. The inhibitory activity was lost after incubation for 1 h at 90 degrees C, after treatment with trypsin (250 micrograms/ml) at 37 degrees C for 30 min and after reduction and alkylation.  相似文献   

7.
Suspensions of proximal tubules were obtained by collagenase digestion of rat renal cortex followed by centrifugation on a percoll gradient. NAD content in tubules incubated at 37 degrees C was decreased by 40-60% compared with tubules incubated at 4 degrees C. This change occurred within 30 min and was maintained for up to 2 hr. Inhibitors of NAD hydrolysing enzymes prevented the depletion of cellular NAD at 37 degrees C. Acute changes in proximal tubule NAD content at 37 degrees C were not accompanied by changes in phosphate uptake by brush border membrane vesicles subsequently prepared from the same tubules. In contrast, incubation of tubules with parathyroid hormone (10(-6) M) produced the expected inhibition (20%) of brush border membrane transport of phosphate. One implication of these findings is that acute changes in total NAD content of proximal tubules at 37 degrees C may not influence the phosphate transport system in the renal brush border membrane. Other interpretations are discussed.  相似文献   

8.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

9.
In this study, we characterized and compared the ligand-independent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes treated with monensin, chloroquine, microtubule depolymerizing agents, or NaN3 and NaF at 37 degrees C. Freshly isolated hepatocytes exhibit predominately one subset of surface Gal receptors, termed State 1 receptors (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). During equilibration at 37 degrees C, these cells also express a second subset of Gal receptors at the surface, termed State 2 receptors, and routinely double their total surface Gal receptor activity. Following equilibration at 37 degrees C and then inhibitor treatment, hepatocytes bound 40-60% less 125I-asialoorosomucoid (ASOR) at 4 degrees C than did untreated cells. Treated cells maintained a basal nonmodulated level of surface receptor activity regardless of temperature, perturbant concentration, or incubation time. Loss of surface Gal receptor activity on cells treated with multiple inhibitors simultaneously or sequentially was not additive. Thus, all treatments affected the same subpopulation of surface Gal receptors. None of these inhibitors decreased surface State 1 Gal receptor activity, but all prevented the normal appearance of State 2 Gal receptors on freshly isolated cells during incubation at 37 degrees C. The endocytic capability of residual surface State 1 Gal receptors on inhibitor-treated cells varied depending on the inhibitor. Hepatocytes treated first at 24 degrees C or with colchicine at 37 degrees C internalized greater than 85% of surface-bound 125I-ASOR. In contrast, monensin- or chloroquine-treated cells internalized approximately 50% of surface-bound 125I-ASOR. Azide-treated cells internalized less than 20% of surface-bound 125I-ASOR. We conclude that only surface State 2 Gal receptor activity is sensitive to these various perturbants. State 1 Gal receptor activity is not modulated. These data are consistent with the conclusion that only State 2 Gal receptors constitutively recycle.  相似文献   

10.
We have investigated the effect of temperature on the content of surface asialoglycoprotein receptors on isolated rat hepatocytes. Receptor was determined by measuring the specific binding of 125I- or [3H] asialo-orosomucoid at 0 degrees C. As reported previously, the receptor number/cell increases 2-3-fold within 30-60 min when freshly isolated cells are warmed from 0-37 degrees C (Weigel, P. H. (1980) J. Biol. Chem. 255, 6111-6120). This increase in receptor number is not inhibited by cycloheximide and also occurs on cells which have first been treated with EDTA to expose a population of cryptic receptors on the cell surface. The rate and extent of the receptor number increase on the cell surface are proportional to the temperature above about 17 degrees C. If cells are first equilibrated at 37 degrees C and then transferred to a lower temperature, the surface receptor number decreases at a rate and to an extent dependent on the temperature. The surface receptor number can be modulated up and down by successive temperature change cycles between 25 and 37 degrees C. In this temperature range, the number of surface receptors/cell is dependent on the final temperature but independent of the pathway to that temperature and is, therefore, a function of state with respect to temperature. The results demonstrate that temperature changes reversibly modulate the number of receptors on the hepatocyte surface. We conclude that, in the absence of ligand, surface receptors can either recycle or can be reversibly internalized or sequestered to prevent access to ligand. The results may also explain why different laboratories have reported a wide range of values for the number of receptors per hepatocyte.  相似文献   

11.
Rat hepatocytes, freshly isolated by a collagenase perfusion technique, bound [3H]asialo-orosomucoid in a sugar-specific and calcium-dependent manner as expected for the hepatic asialoglycoprotein receptor. At least 90% of the total cell surface-bound [3H]asialo-orosomucoid represented specific binding and could be removed by washing with EDTA. Freshly isolated cells had about 7 x 10(4) surface receptors per cell. However, when cells were incubated at 37 degrees C, the number of surface receptors per cell rapidly increased 2- to 3-fold to about 2.2 x 10(5). This increase in receptor number occurred in the absence of serum and began within minutes, depending on the particular conditions used to keep the cells in suspension. (The maximal rate of appearance of new receptors at 37 degrees C was about 70 receptors per cell per s.) When cells were first exposed to a brief EDTA treatment at 4 degrees C, before measuring the binding of [3H]asialo-orosomucoid, the number of surface receptors per cell was found to increase by about 45%. Therefore, about 30% of the surface receptors on freshly isolated cells have already bound endogenous asialoglycoproteins or are present in the membrane in a cryptic form. At 4 degrees C the binding of [3H]asialo-orosomucoid was rapid (kon greater than or equal to 1.8 x 10(4) M-1s-1), whereas the dissociation of bound [3H]asialo-orosomucoid, measured in the presence of excess nonradioactive glycoprotein, was extremely slow (koff less than or equal to 0.9 x 10(-5) s-1). The association constant calculated from these data (Ka = 2.0 x 10(9) M-1) agreed well with that obtained from equilibrium binding experiments (Ka = 2.4 x 10(9) M-1) using untreated cells or cells which had first been treated with EDTA or incubated at 37 degrees C. In all cases, when the concentration of [3H]asialo-orosomucoid was higher than about 600 ng/ml, the Scatchard plots were curvilinear. The data are, however, consistent with the conclusion that there is a single high affinity receptor on the hepatocyte surface. The additional receptors that appear on the surface when cells are incubated at 37 degrees C or exposed to EDTA are identical with those on untreated cells,  相似文献   

12.
After incubation of isolated forelimb regenerates of Notophthalmus (Triturus) viridescens at all developmental stages for 60 minutes at 37 degrees C in a salt medium containing 111 mM sodium chloride, 5.6 mM potassium chloride and 100 mM sodium phosphate buffer at pH 7.5, the wound epithelium of each regenerate was removed intact from its underlying mesenchymal component. The suggestion is made that the salt medium is an effective epithelial-mesenchymal separating agent due to a combination of its hypertonicity, high ionic strength and the fact that the medium precipitates calcium as calcium phosphate. Attempts to dissect away the epithelium from the mesenchyme after incubation of isolated regenerates in sodium phosphate containing 1% or 3% Difco 1:250 trypsin, 10 mM EDTA or 150 units collagenase/ml medium were unsuccessful. Epidermis of adult newt forelimb skin was removed only after extended incubation of the forelimbs in the salt medium for three hours at 37 degrees C or after freezing isolated forelimbs in buffer and subsequent thawing.  相似文献   

13.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

14.
At alpha 1-adrenergic receptors in isolated rat liver parenchymal cells, (-)-epinephrine is potent in eliciting a maximal increase in glycogenolysis (Kact = 24 nM). This contrasts with a 100-fold lower affinity for the agonist at alpha 1-adrenergic receptors of intact hepatocytes determined from equilibrium competition assays with the alpha 1-adrenergic antagonist [3H]prazosin. We demonstrate here that agonists bind to alpha 1-adrenergic receptors of intact liver cells initially with a markedly higher affinity than under equilibrium conditions. When incubations are performed for 15 s at 37 degrees C, the affinity is more than 100-fold higher than that obtained in equilibrium (45 min) assays (IC50 = 28 +/- 3 vs 5300 +/- 400 nM for (-)-epinephrine and 32 +/- 3 vs 6100 +/- 500 nM for (-)-norepinephrine). When incubations are performed at 4 degrees C (150 min), high-affinity binding similar to that obtained in short-term incubations can also be demonstrated. In contrast, antagonist compete with similar affinities in 15 s and 45 min assays, and their dissociation constants are not affected by changes in the incubation temperature. These results indicate that agonists bind to native alpha 1-adrenergic receptors transiently with high affinity. The conversion of receptors to a state of predominantly low affinity for agonists, which occurs rapidly and irreversibly with increasing incubation at 37 degrees C, is inhibited at low incubation temperatures. It is suggested that the high-affinity configuration of the alpha 1-adrenergic receptor for agonists observed in nonequilibrium experiments or at reduced incubation temperatures represents the physiologically relevant state of the alpha 1-adrenergic receptor.  相似文献   

15.
Three hours after isolation, cultured hepatocytes have approximately 150,000 surface vasopressin receptors/cell, and these exhibit a Kd for 125I-vasopressin of 6 nM based on calculation of Koff/Kon, or a Kd of 9.5 nM based on Scatchard plot analysis. After the binding of 125I-vasopressin to its receptor on the hepatocyte surface, this complex is internalized with a t1/2 of 3-6 min. Following this internalization, the number of vasopressin receptors on the cell surface is restored both in vitro and in the isolated perfused liver with a t1/2 of 8-10 min. This restoration is blocked in vitro by incubation of the hepatocytes at 18 degrees C, but not by cycloheximide, suggesting that internalized vasopressin receptors recycle back to the cell surface. Prolonged incubation of hepatocytes with vasopressin results in the loss of greater than 75% of the vasopressin surface binding at concentrations of vasopressin approximately equivalent to its Kd. The binding of vasopressin to cultured hepatocytes 3-5 h after isolation resembles binding to the isolated perfused whole liver with respect to receptor dynamics. During culture for 48 h, however, we observe a progressive loss of hepatocyte surface vasopressin receptors. Concomitant with this reduction in surface receptors with time in culture, there appears to be a marked elevation in intracellular receptors.  相似文献   

16.
The effects of temperature and pH on the nonenzymatic (chemical) reduction of triphenyltetrazolium chloride (TTC) to triphenyl formazan (TF) in cheese whey and municipal solid waste compost samples were studied. Ten different incubation temperatures and 13 pH levels were tested. The study showed that the TTC could be reduced nonenzymatically at high temperatures and/or under alkaline pH conditions. The nonenzymatic TTC reduction was observed at pH values greater than 9.5 and 11.0 for the cheese whey and compost, respectively. The TTC chemical reduction rate followed the same trend in both media. The TF content increased with increasing the pH value, reaching its maximum at a pH of 12, then decreased and was not detected at a pH of 13. The TTC was also reduced nonenzymatically at temperatures higher than 70 and 85 degrees C for cheese whey and compost, respectively. Evaporation did not seem to have any significant effect on the TTC chemical reduction since less than 3% of water content was lost at a temperature of 100 degrees C. It was noticed that the TF yield in cheese whey samples was higher than that in compost samples. This was due to the higher moisture content of cheese whey and the presence of copper in the compost samples, which reacted chemically with the TF causing reduction in the red color. For a given incubation period, the effect of pH on the TTC chemical reduction was more significant than the effect of incubation temperature (at a 2 h incubation period, 57.5% and 17.9% of the TTC were chemically reduced at a pH of 12 compared to 10.9% and 7.7% at an incubation temperature of 100 degrees C, for cheese whey and compost, respectively). Among the six metals tested (Ca, Cu, K, Na, Ni, and Zn) only Cu affected the color intensity of the TF. The activation energy of the TTC chemical reduction was 168,808 and 239,102 J/mol in cheese whey and municipal solid compost, respectively. For dehydrogenase activity measurement, the pH of the samples and the incubation temperature should not be higher than 9 and 60 degrees C in order to ensure that the TTC reduction is caused only by the biochemical reaction. Measuring the color intensity of TF in waste samples that contain copper could give misleading results as a result of the formation of formazan copper complex, which reduces the red color.  相似文献   

17.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

18.
The experimental modulation of tight junctions (TJ) was studied in the human adenocarcinoma cell line HT 29 by freeze-fracture electron microscopy. The cell line has virtually no TJ when grown in culture. TJ could be induced by mild treatment with a variety of endopeptidases (trypsin, chymotrypsin, collagenase, elastase, plasmin, thrombin, papain, and pronase). Pronase induced the formation of TJ at low (but not at high) concentrations. All exopeptidases studied were unable to induce the formation of TJ. At 0 degree C the trypsin-induced formation of TJ was greatly slowed down although not entirely inhibited. However, when cells were briefly treated with trypsin at 0 degree C and subsequently transferred to 37 degrees C in the presence of protease inhibitors, TJ were rapidly assembled. Thus an induction phase at low temperature and an assembly phase at high temperature could be experimentally separated. When cells were briefly trypsinized at 0 degrees and subsequently kept at 0 degree C without trypsin for several hours, TJ still formed abundantly upon incubation at 37 degrees C. It appears therefore that the effect produced by the protease is retained for long periods in the cold.  相似文献   

19.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

20.
A specific collagenase (EC 3.4.24.3) has been found and purified from serum-free culture medium of 11095 epidermoid carcinoma of rat prostate. The molecular weight of this collagenase was estimated at 71 000 and the pH optimum was approx. 7. At 26 degrees C, the collagenase cleaved collagen at a site 3/4 the length from the N-terminus. At 37 degrees C, this collagenase degraded collagen to smaller peptides. The enzyme activity was inhibited by serum, cysteine and EDTA, but not by protease inhibitors. The presence of collagenase in rat tumor tissue suggests that this enzyme might play a significant role in tissue invasion by cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号