首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The Kruskal-Oberman kinetic model is used to determine the conditions for the convective stability of a plasma in a system of coupled axisymmetric adiabatic open cells in which the magnetic field curvature has opposite signs. For a combination of a nonparaxial simple mirror cell and a semicusp, the boundaries of the interval of values of the flux coordinate where the plasma can be stable are determined, as well as the range in which the ratio of the pressures in the component cells should lie. Numerical simulations were carried out for different particle distributions over the pitch angle.  相似文献   

2.
An algorithm is proposed that allows one to identify the MHD mode structure in toroidal plasmas by processing signals from Mirnov probes measuring plasma MHD activity. The algorithm differs fundamentally from the diagnostic methods presently used in tokamaks, being simpler and more efficient. The algorithm is based on constructing an analytic signal using the Hilbert transformation of the Mirnov signals at a given instant. The phase and amplitude dependences obtained take into account the toroidal effects and allow one to determine the number and amplitude of the excited MHD mode. The algorithm was approbated with both test signals and actual signals from MHD diagnostics in the T-10 tokamak. It is demonstrated that the algorithm can be used to analyze single-mode MHD instabilities in toroidal plasmas.  相似文献   

3.
Mechanisms for the development of quasistatic MHD perturbations in a viscous rotating tokamak plasma are considered. The influence of stray magnetic fields on the stability of MHD modes in the plasma of the TFTR tokamak is analyzed.  相似文献   

4.
Conditions are determined for the stability of a finite-pressure plasma against perturbations localized near a magnetic field line in a magnetic confinement system without average minimum-B. The marginal stability (ω2=0) is achieved at the pressure profile pU ?5/3 (where $U = \oint {\frac{{dl}}{B}}$ ), provided that the pressure is lower than a certain critical value above which an unstable incompressible mode in which the displacement as a function of the coordinate along the field line has zeros appears at some magnetic field line.  相似文献   

5.
The linear equation for ideal magnetohydrodynamic ballooning modes in three-dimensional configurations is derived in the coordinate system that is optimal for the representation of the equilibrium state. The magnetic field lines in this coordinate system, however, are not straight. The form of the Mercier criterion that is currently in use is recovered from the asymptotic analysis of the ballooning equation. To determine the parallel-current density, a magnetic differential equation expressed in the optimal coordinates must be inverted.  相似文献   

6.
Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.  相似文献   

7.
A class of linearly perturbed discrete-time single species scramble competition models, like the Ricker map, is considered. Perturbations can be of both recruitment and harvesting types. Stability (bistability) is considered for models, where parameters of the map do not depend on time. For models with recruitment, the result is in accordance with Levin and May conjecture [S.A. Levin, R.M. May, A note on difference delay equations, Theor. Pop. Biol. 9 (1976) 178]: the local stability of the positive equilibrium implies its global stability. For intrinsic growth rate r-->infinity the way to chaos is broken down to get extinction of population for the depletion case and to establish a stable two-cycle period for models with immigration. The latter behaviour is also studied for models with random discrete constant perturbations of recruitment type. Extinction, persistence and existence of periodic solutions are studied for the perturbed Ricker model with time-dependent parameters.  相似文献   

8.
9.
This study investigated the stepping boundary – the force that can be resisted without stepping – for force-controlled perturbations of different durations. Twenty-two healthy young adults (19–37 years old) were instructed to try not to step in response to 86 different force/time combinations of forward waist-pulls. The forces at which 50% of subjects stepped (F50) were identified for each tested perturbation durations. Results showed that F50 decreased hyperbolically when the perturbation’s duration increased and converged toward a constant value (about 10% BW) for longer perturbations (over 1500 ms). The effect of perturbation duration was critical for the shortest perturbations (less than 1 s).In parallel, a simple function was proposed to estimate this stepping boundary. Considering the dynamics of a linear inverted pendulum + foot model and simple balance recovery reactions, we could express the maximum pulling force that can be withstood without stepping as a simple function of the perturbation duration. When used with values of the main model parameters determined experimentally, this function replicated adequately the experimental results.This study demonstrates for the first time that perturbation duration has a major influence on the outcomes of compliant perturbations such as force-controlled pulls. The stepping boundary corresponds to a constant perturbation force-duration product and is largely explained by only two parameters: the reaction time and the displacement of the center of pressure within the functional base of support. Future work should investigate pathological populations and additional parameters characterizing the perturbation time-profile such as the time derivative of the perturbation.  相似文献   

10.
The secondary structure implications of precipitation induced by a chaotropic salt, KSCN, and a structure stabilizing salt, Na2SO4, were studied for twelve different proteins. α-helix and β-sheet content of precipitate and native structures were estimated from the analysis of amide I band Raman spectra. A statistical analysis of the estimated perturbations in the secondary structure contents indicated that the most significant event is the formation of β-sheet structures with a concomitant loss of α-helix on precipitation with KSCN. The conformational changes for each protein were also analyzed with respect to elements of primary, secondary and tertiary structure existing in the native protein; primary structure was quantified by the fractions of hydrophobic and charged amino acids, secondary structure by x-ray estimates of α-helix and β-sheet contents of native proteins and tertiary structure by the dipole moment and solvent-accessible surface area. For the KSCN precipitates, factors affecting β-sheet content included the fraction of charged amino acids in the primary sequence and the surface area. Changes in α-helix content were influenced by the initial helical content and the dipole moment. The enhanced β-sheet contents of precipitates observed in this work parallel protein structural changes occurring in other aggregative phenomena.  相似文献   

11.
The local dispersion relation obtained for an inhomogeneous anisotropic high-pressure plasma in the Chew-Goldberger-Low approximation is used to qualitatively study small-scale MHD plasma instabilities in alternative magnetic configurations in which the plasma compressibility plays a significant stabilizing role. It is established that it is important to satisfy the Bernstein-Kadomtsev condition in order to reduce the growth rate of the quasi-flute oscillations. Moderate plasma anisotropy is shown not to have a substantial destabilizing effect on the MHD plasma stability under the Bernstein-Kadomtsev condition in alternative systems. The situation in which the electron compressibility vanishes while the ion compressibility is nonzero is discussed; it is shown that, in this situation, the Bernstein-Kadomtsev condition becomes more stringent as the longitudinal wavenumber increases.  相似文献   

12.
For a plasma with confined in a system of two simple axisymmetric mirror cells separated by a divertor cell, a radial plasma pressure profile is obtained that is stable against convective modes and drops off to zero at the separatrix. The shape of the marginally stable pressure profile depends on the geometric parameters (such as mirror ratios and the localization of the divertor cell), the ratio of the pressure in the mirrors cells to the pressure in the divertor cell, and the degree of pressure anisotropy.  相似文献   

13.
西双版纳热带季节雨林大气稳定度特征   总被引:3,自引:0,他引:3  
利用2003-2005年西双版纳热带季节雨林林冠上方的常规观测资料和涡度相关观测资料,对树冠边界层的大气稳定度频率分布进行了分析.分别计算了近地层尺度参数和理查逊数,并根据结果对大气稳定度类型进行了划分,分析了大气稳定状态的时间变化,对2种方法得到的结果进行了对比分析,结果表明:2种不同方法计算的稳定度变化趋势是一致的,但不同状态出现频次有所不同;相对于近地层尺度参数法,理查逊数法计算的大气稳定度季节变化和年际变化均较明显,而近地层尺度参数法则未表现出明显波动.  相似文献   

14.
AimIn this article, we discuss the connection between alcohol and the control strategies carried out by the central nervous system to maintain the erect stance. Audio-visual perturbations were coupled with the consumption of an alcoholic beverage to simulate the possible perturbation affecting people at disco clubs, and the effects measured with a stabilometric platform.MethodsWe studied the statokinesigrams (SKG) of 14 volunteers; 11 of them were healthy, 3 were injured. We made a series of numerical tests using a stabilometric platform to record the statokinesigrams.The tests were carried out using statistical methods, time-series analysis, and applying the “p” parameter, recently proposed by Pascolo and Marini [2006. On the introduction of a new parameter for the analysis of posture. Europa Medicophysica, 42, 145–149] as a new tool to evaluate the reactions of the central control system with respect to posture-affecting diseases (for instance Parkinson) and perturbations.ConclusionThis work shows that it is theoretically possible to define non-invasive parameters able to distinguish sober subjects from drunk subjects, with an evaluation that only uses a stabilometric platform.  相似文献   

15.
Musculoskeletal simulations of human movement commonly use Hill muscle models to predict muscle forces, but their sensitivity to model parameter values is not well understood. The purpose of this study was to evaluate muscle model sensitivity to perturbations in 14 Hill muscle model parameters in forward dynamic simulations of running and walking by varying each by +/-50%. Three evaluations of the muscle model were performed based on: (1) calculating the sensitivity of the muscle model only, (2) determining the continuous partial derivatives of the muscle equations with respect to each parameter, and (3) evaluating the effects on the running and walking simulations. Model evaluations were found to be very sensitive (percent change in outputs greater than parameter perturbation) to parameters defining the series elastic component (tendon), force-length curve of the contractile element and maximum isometric force. For some parameters, the range of literature values was larger than the model sensitivity. Model evaluations were insensitive to parameters defining the parallel elastic element, force-velocity curve of the contractile element and muscle activation time constants. The derivative method provided similar results, but also provided a generic, continuous equation that can easily be applied to other motions. The sensitivities of the running and walking simulations were reduced compared to the sensitivity of the muscle model alone. Results demonstrate the importance of evaluating sensitivity of a musculoskeletal simulation in a controlled manner and provide an indication of which parameters must be selected most carefully based on the sensitivity of a given movement.  相似文献   

16.
A set of linear integrodifferential equations is presented for the plasma displacement components that minimize the Kruskal-Oberman functional of the potential energy of an MHD perturbation. Marginal stability results when the smallest eigenvalue of this set of equations is zero.  相似文献   

17.
We investigate the equilibrium structure for an evolutionary genetic model in discrete time involving two monoecious populations subject to intraspecific and interspecific random pairwise interactions. A characterization for local stability of an equilibrium is found, related to the proximity of this equilibrium with evolutionarily stable strategies (ESS). This extends to a multi-population framework a principle initially proposed for single populations, which states that the mean population strategy at a locally stable equilibrium is as close as possible to an ESS.  相似文献   

18.
To explore how environmental variability may create non‐random community structure, we simulated the assembly of model communities under varying levels of environmental variability. We assembled communities by creating a large pool of randomly constructed species, and then added species from this pool sequentially, allowing extinctions of invading and resident species to occur until the community became saturated. Because much current research on community structure focuses on single trophic levels, we constructed species pools consisting only of competitors. To compare with more realistic communities, we also created species pools with multiple trophic levels. For both types of communities, following assembly we calculated a variety of metrics of community structure, and five measures of community stability. Communities assembled under high environmental variability had fewer species, fewer and weaker interactions among species, and greater evenness in abundance of persisting species. For single trophic‐level communities, community size was dictated primarily by competitive exclusion. In contrast, for multiple trophic‐level communities, community size was increasingly limited by dynamical instabilities as environmental variability increased. Differences in community structure resulting from assembly under high environmental variability led to differences in community stability. According to two measures of stability related to population variability – the characteristic return rate to equilibrium and the coefficient of variation in individual species densities – stability increased for communities assembled under high environmental variability. In contrast, three additional measures of stability that are not directly related to population variability showed a variety of patterns, either increasing, decreasing, or remaining constant. Thus, communities assembled in highly variable environments are not necessarily generically more stable. Our results demonstrate that environmental variability can structure communities and affect their stability properties in non‐trivial ways. Thus, when making predictions about the response of communities to future extinctions or environmental degradation, account should be given to the forces responsible for community structure.  相似文献   

19.
The evolution and local stability of a system of two interacting species in a finite two-dimensional habitat is investigated by taking into account the effects of self- and cross-dispersion and convection of the species. In absence of cross-dispersion, an equilibrium state which is stable without dispersion is always stable with dispersion provided that the dispersion coefficients of the two species are equal. However, when the dispersion coefficients of the two species are different, the possibility of self-dispersive instability arises. It is also pointed out that the cross-dispersion of species may lead to stability or instability depending upon the nature and the magnitude of the cross-dispersive interactions in comparison to the self-dispersive interactions. The self-convective movement of species increases the stability of the equilibrium state and can stabilize an otherwise unstable equilibrium state. The effect of cross-convection (in absence of self-dispersion and self-convection) is to stabilize the equilibrium state in a prey-predator model with positive cross-dispersion coefficients for the prey species. Finally, it is shown that if the system is stable under homogeneous boundary conditions it remains so under non-homogeneous boundary conditions.  相似文献   

20.
Gangliosides are significant participants in suppression of immune system during tumor processes. It was shown that they can induce apoptosis of T-lymphocytes in a raft-dependent manner. Fluorescence confocal microscopy was used to study distribution and influence of ganglioside GM1 on raft properties in giant unilamellar vesicles. Both raft and non-raft phase markers were utilized. No visible phase separation was observed without GM1 unless lateral tension was applied to the membrane. At 2 mol % of GM1 large domains appeared indicating macroscopic phase separation. Increase of GM1 content to 5 mol % resulted in shape transformation of the domains consistent with growth of line tension at the domain boundary. At 10 mol % of GM1 almost all domains were pinched out from vesicles, forming their own homogeneous liposomes. Estimations showed that the change of the GM1 content from 2 to 5–10 mol % resulted in a several-fold increase of line tension. This finding provides a possible mechanism of apoptosis induction by GM1. Incorporation of GM1 into a membrane leads to an increase of the line tension. This results in a growth of the average size of rafts due to coalescence or merger of small domains. Thus, necessary proteins can find themselves in one common raft and start the corresponding cascade of reactions. The article is published in the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号