首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PF-4455242 and its analogues represent a new series of kappa opioid selective antagonists that demonstrate high selectivity and potency. We investigated their binding mode to the κ-receptor via docking and molecular dynamics simulations. The ranking of the predicted binding free energies is consistent with experimental results. Detailed binding free energies between antagonists and individual protein residues were calculated, and key residues involved in binding were identified. Deviation of the active site residues was investigated, and the results show that Gln115, Leu135, Tyr139, Trp287 and Tyr313 deviate greatly from the reference structure. Information obtained from molecular modeling studies will aid in the design of potent kappa receptor antagonists.  相似文献   

2.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
The infections caused by multidrug resistant bacteria are widely treated with carabapenem antibiotics as a drug of choice, and human serum albumin (HSA) plays a vital role in binding with drugs and affecting its rate of delivery and efficacy. So, we have initiated this study to characterize the mechanism of doripenem binding and to locate its site of binding on HSA by using spectroscopic and docking approaches. The binding of doripenem leads to alteration of the environment surrounding Trp‐214 residue of HSA as observed by UV spectroscopic study. Fluorescence spectroscopic study revealed considerable interaction and complex formation of doripenem and HSA as indicated by Ksv and Kq values of the order of 104 M?1 and 1012 M?1 s?1, respectively. Furthermore, doripenem quenches the fluorescence of HSA spontaneously on a single binding site with binding constant of the order of 103 M?1, through an exothermic process. Van der Waals forces and hydrogen bonding are the major forces operating to stabilize HSA‐doripenem complex. Circular dichroism spectroscopic study showed changes in the structure of HSA upon doripenem binding. Drug displacement and molecular docking studies revealed that the binding site of doripenem on HSA is located on subdomain IB and III A. This study concludes that, due to significant interaction of doripenem on either subdomain IB or IIIA of HSA, the availability of doripenem on the target site may be compromised. Hence, there is a possibility of unavailability of threshold amount of drug to be reached to the target; consequently, resistance may develop in the bacterial population.  相似文献   

4.
Interaction between ulipristal acetate (UPA) and human serum albumin (HSA) was investigated in simulated physiological environment using multi-spectroscopic and computational methods. Fluorescence experiments showed that the quenching mechanism was static quenching, which was confirmed by the time-resolved fluorescence. Binding constants (Ka) were found to be 1?×?105 L mol?1, and fluorescence data showed one binding site. Thermodynamic constants suggested the binding process was mainly controlled by electrostatic interactions. Results from the competition experiments indicated that UPA bound to site I of HSA. Fourier transform infrared spectra, circular dichroism spectra, synchronous fluorescence spectra, and 3D fluorescence indicated that UPA can induce conformation change in the HSA. The content of α-helix and β-sheet increased, while β-turn decreased. Hydrophobicity around the tryptophan residues declined, whereas its polarity increased. Molecular docking results were consistent with the experimental results. Results suggested that UPA located at the hydrophobic cavity site I of HSA, and hydrophobic force played the key role in the binding process. Moreover, molecular dynamics simulation was performed to determine the stability of free HSA and HSA-UPA system. Results indicated that UPA can stabilize HSA to a certain degree and enhance the flexibility of residues around site I.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
Structural modification through binding interaction of plasma protein bovine serum albumin (BSA) with an extrinsic charge transfer fluorophore 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) and its response to external perturbation due to interactions with surfactant sodium dodecyl sulphate (SDS) have been explored at physiological pH by steady state absorption, emission, fluorescence anisotropy, red edge excitation shift, far-UV circular dichroism and time resolved spectral measurements in combination with Molecular Docking and Molecular Dynamics (MD) simulation. Interaction of the probe with BSA is reflected by a small change in protein secondary structure with fluorescence enhancement and blue shift of probe emission. Molecular docking studies revealed that the probe binds to the hydrophobic cavity of sub-domain IIA of BSA. The distance for energy transfer from the tryptophan of BSA to the bound DMAPPDA measured by Fluorescence Resonance Energy Transfer is in good agreement with the molecular docking results. MD simulation predicts stabilization of the complex with respect to the bare molecule. Interaction of BSA and SDS with DMAPPDA supports the movement of the probe from hydrophilic free water region to a more restricted hydrophobic zone inside the protein.  相似文献   

6.
Jana S  Dalapati S  Ghosh S  Guchhait N 《Biopolymers》2012,97(10):766-777
The nature of binding of specially designed charge transfer (CT) fluorophore at the hydrophobic protein interior of human serum albumin (HSA) has been explored by massive blue-shift (82 nm) of the polarity sensitive probe emission accompanying increase in emission intensity, fluorescence anisotropy, red edge excitation shift, and average fluorescence lifetimes. Thermal unfolding of the intramolecular CT probe bound HSA produces almost opposite spectral changes. The spectral responses of the molecule reveal that it can be used as an extrinsic fluorescent reporter for similar biological systems. Circular dichrosim spectra, molecular docking, and molecular dynamics simulation studies scrutinize this binding process and stability of the protein probe complex more closely.  相似文献   

7.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

8.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, homology modeling, molecular docking and molecular dynamics simulation were performed to explore structural features and binding mechanism of some inhibitors of chemokine receptor type 5 (CCR5), and to construct a model for designing new CCR5 inhibitors for preventing HIV attachment to the host cell. A homology modeling procedure was employed to construct a 3D model of CCR5. For this procedure, the X-ray crystal structure of bovine rhodopsin (1F88A) at 2.80? resolution was used as template. After inserting the constructed model into a hydrated lipid bilayer, a 20ns molecular dynamics (MD) simulation was performed on the whole system. After reaching the equilibrium, twenty-four CCR5 inhibitors were docked in the active site of the obtained model. The binding models of the investigated antagonists indicate the mechanism of binding of the studied compounds to the CCR5 obviously. Moreover, 3D pictures of inhibitor-protein complex provided precious data regarding the binding orientation of each antagonist into the active site of this protein. One additional 20 ns MD simulation was performed on the initial structure of the CCR5-ligand 21 complex, resulted from the previous docking calculations, embedded in a hydrated POPE bilayer to explore the effects of the presence of lipid bilayer in the vicinity of CCR5-ligand complex. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.  相似文献   

10.
Chiral recognition mechanism relationships for binding at site II on human serum albumin (HSA) were investigated using D, L dansyl amino acids. Sodium phosphate salt was used as a solute-HSA interaction modifier. A new model was developed using a biochromatographic approach to describe the variation in the transfer equilibrium constant with the salt concentration, i.e., the nature of the interactions. The solute binding was divided into two salt concentration ranges c. For the low c values, below 0.03 M, the nonstereoselective interactions constituted the preponderant contribution to the variation in the solute binding with the salt concentration. For the high c values, above 0.03 M, the solute binding was governed by the hydrophobic effect and the stereoselective interactions. The different contributions implied in the binding process provided an estimation of both the surface charge density (sigma/F) and the surface area of the site II binding cavity accessible to solvent, which were found to be equal to around 10.10(-7) mol/m(2) and 2 nm(2). As well, the excess of sodium ions excluded by the solute transfer from the surface area of the pocket were about(-0.7) for dansyl norvaline and (-0.8) for dansyl tryptophan.  相似文献   

11.
Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419-426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclooxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents (microM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure. Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of K(Res) = 2.56 x 10(5) M(-1). The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of alpha-helix from 57% (free HSA) to 62% and a decrease of beta-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.  相似文献   

12.
Flavonoid binding to human serum albumin   总被引:1,自引:0,他引:1  
Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow’s site I range between 3.3 × 10−6 and 3.9 × 10−5 M, at pH 7.0 and 20.0 °C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.  相似文献   

13.
Therapeutic effects of saffron ingredients were studied in some diseases. The pharmacokinetics and pharmacodynamics of these ingredients were also studied, but their transport mechanism is not clearly known. Serum albumin has been known as the most important transporter of many drugs in the body that affects their disposition, transportation, and bioavailability. Here, we investigated the interaction of crocin (Cro) with HSA, for the first time, and compared with the crocetin (Crt)–HSA interaction. UV and fluorescence spectroscopy, circular dichroism (CD), and molecular docking was applied to investigate the possibility and mechanism of binding of HSA with these natural carotenoids. The gradually addition of Cro increased HSA absorbency at 278 nm, while Crt decreased it. Both of these changes induced HSA unfolding that was confirmed by the decreased α-helix content, as determined by the CD. Both carotenoids quenched HSA fluorescence emission, but with different mechanisms. The Stern–Volmer plots indicated a dynamic quenching of intrinsic emission of HSA due to Cro addition, while Crt quenching followed both static and dynamic quenching mechanisms. Docking results indicated binding of Cro/Crt in sub-domain IIA, Sudlow site I of HSA, which accompanied with the hydrogen bonding of Cro/Crt with Tyr138. The interaction of these ligands (Cro/Crt) caused HSA unfolding and affects the hydrophobic environment of Trp241, which result in the quenching of Trp fluorescence. The UV spectroscopy and fluorescence quenching data indicated the differences in the mechanisms of interaction of Cro/Crt with HSA, which is due to the differences in the structure and hydrophobicity of these ligands.  相似文献   

14.
Molecular docking and molecular dynamics (MD) simulations are used to investigate the interactions of curcumin analogues (CAs) with human cytochrome P450 2 C9 (CYP2C9 or 2 C9) and the conformations of their binding sites. In order to examine conformations of CAs/2 C9 and interaction characteristics of their binding sites, RMSDs, RMSFs, and B-factors are computed, and electrostatic and hydrophobic interactions between CAs and 2 C9 are analyzed and discussed. Results demonstrate that the most CAs studied lie 4~15 ? above the heme of CYP2C9. The presence of CAs makes some residues in bound CYP2C9s become more flexible. In the binding sites of A0/2 C9 and C0/2 C9, the formation of H-bond networks (or CA-water-residue bridges) enhances the interactions between CAs and 2 C9. The stronger inhibitory effects of A0, B0, and C0 on 2 C9 can be ascribed to stronger electrostatic and hydrophobic interactions in the binding sites of CAs/2 C9.  相似文献   

15.
We present a brief overview of the present knowledge on the structural and molecular properties of angiotensin II receptors and the various attempts to determine their primary structures, with special reference to our strategy for receptor purification. The strategy involves covalent labeling of the receptor with synthetic biotinylated photoactivatable probes, followed by indirect affinity chromatography on immobilized streptavidin. The various applications of these probes to the study of structural and molecular properties and to the cell biology of angiotensin II receptors are discussed.  相似文献   

16.
The binding of small molecular drugs with human serum albumin (HSA) has a crucial influence on their pharmacokinetics. The binding interaction between the antihypertensive eplerenone (EPL) and HSA was investigated using multi-spectroscopic techniques for the first time. These techniques include ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR), native fluorescence spectroscopy, synchronous fluorescence spectroscopy and molecular docking approach. The fluorescence spectroscopic study showed that EPL quenched HSA inherent fluorescence. The mechanism for quenching of HSA by EPL has been determined to be static in nature and confirmed by UV absorption and fluorescence spectroscopy. The modified Stern–Volmer equation was used to estimate the binding constant (Kb) as well as the number of bindings (n). The results indicated that the binding occurs at a single site (Kb = 2.238 × 103 L mol−1at 298 K). The enthalpy and entropy changes (∆H and ∆S) were 58.061 and 0.258 K J mol−1, respectively, illustrating that the principal intermolecular interactions stabilizing the EPL–HSA system are hydrophobic forces. Synchronous fluorescence spectroscopy revealed that EPL binding to HSA occurred around the tyrosine (Tyr) residue and this agreed with the molecular docking study. The Förster resonance energy transfer (FRET) analysis confirmed the static quenching mechanism. The esterase enzyme activity of HSA was also evaluated showing its decrease in the presence of EPL. Furthermore, docking analysis and site-specific markers experiment revealed that EPL binds with HSA at subdomain IB (site III).  相似文献   

17.
Human serum albumin (HSA) is a major plasma protein and binding of drugs with this plasma protein has a great importance. It possess esterase activity which can cleave the drugs containing ester bond and thus, can regulate the effect of drugs. Till date no systematic study has been done to analyse binding of such drugs and to compare the results with the drugs which do not have ester bond. Therefore, in the present study two different categories—ester and non-ester drugs have been considered to analyse their interaction with HSA at two principle drug binding sites using molecular modelling tools. It is observed that the drugs irrespective of ester or non-ester nature prefer either Sudlow site I or II by hydrogen bond and hydrophobic interactions. The information obtained from the study can assist to study pharmacokinetics of the drugs and that in turn will help in noval drug discoveries.  相似文献   

18.
Interaction mechanisms of human serum albumin (HSA) with safranal and crocin were studied using UV–Vis absorption, fluorescence quenching and circular dichroism (CD) spectroscopies as well as molecular docking techniques. Changes in absorbance and fluorescence of HSA upon interactions with both compounds were attributed to their binding to amino acid chromophores located in subdomains IIA and IIIA. Fluorescence secondary inner filter effect was excluded using 278 nm and 340 nm as the wavelengths of HSA's excitation and fluorescence while safranal and crocin absorbed at 320 nm and 445 nm, respectively. Stern-Volmer model revealed a static quenching mechanism involve the formation of non-fluorescent ground state complexes. Stern-Volmer, Hill, Benesi-Hilbrand and Scatchard models gave apparent binding constants ranged in 4.25 × 103 - 2.15 × 105 for safranal and 7.67 × 103 - 4.23 × 105 L mol?1 for crocin. CD measurements indicated that 13 folds of safranal and crocin unfolded the α-helix structure of HSA by 7.47–21.20%. In-silico molecular docking revealed selective exothermic binding of safranal on eight binding sites with binding energies ranged in ?3.969 to ?6.6.913 kcal/mol. Crocin exothermally bound to a new large pocket located on subdomain IIA (sudlow 1) with binding energy of ?12.922 kcal/mol.These results confirmed the formation of HSA stable complexes with safranal and crocin and contributed to our understanding for their binding characteristics (affinities, sites, modes, forces … etc.) and structural changes upon interactions. They also proved that HSA can solubilize and transport both compounds in blood to target tissues. The results are of high importance in determining the pharmacological properties of the two phytochemical compounds and for their future developments as anticancer, antispasmodic, antidepressant or aphrodisiac therapeutic agents.  相似文献   

19.

Background

Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

Methods

The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

Results

Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105M?1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

Conclusions

On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.
  相似文献   

20.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号