首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Impaired formation of desmosomal junctions in ADPKD epithelia   总被引:1,自引:1,他引:0  
Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell–cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell–cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.  相似文献   

2.
Tumour development is a process resulting from the disturbance of various cellular functions including cell proliferation, adhesion and motility. While the role of these cell parameters in tumour promotion and progression has been widely recognized, the mechanisms that influence gap junctional coupling during tumorigenesis remain elusive. Neoplastic cells usually display decreased levels of connexin expression and/or gap junctional coupling. Thus, impaired intercellular communication via gap junctions may facilitate the release of a potentially neoplastic cell from the controlling regime of the surrounding tissue, leading to tumour promotion. However, recent data indicates that metastatic tumour cell lines are often characterized by relatively high levels of connexin expression and gap junctional coupling. This review outlines current knowledge on the role of connexins in tumorigenesis and the possible mechanisms of the interference of gap junctional coupling with the processes of tumour invasion and metastasis. Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication costs were covered by the organisers of this meeting.  相似文献   

3.
PurposesGap junction intercellular communication (GJIC) is essential for articular cartilage to respond appropriately to physical or biological stimuli and maintain homeostasis. Connective tissue growth factor (CTGF), identified as an endochondral ossification genetic factor, plays a vital role in cell proliferation, migration and adhesion. However, how CTGF regulates GJIC in chondrocytes is still unknown. This study aims to explore the effects of CTGF on GJIC in chondrocytes and its potential biomechanism.Materials and methodsqPCR was performed to determine the expression of gene profile in the CCN family in chondrocytes. After CTGF treatment, CCK‐8 assay and scratch assay were performed to explore cell proliferation and migration. A scrape loading/dye transfer assay was adopted to visualize GJIC in living chondrocytes. Western blot analysis was done to detect the expression of Cx43 and PI3K/Akt signalling. Immunofluorescence staining was used to show protein distribution. siRNA targeting CTGF was used to detect the influence on cell‐cell communication.ResultsThe CTGF (CCN2) was shown to be the highest expressed member of the CCN family in chondrocytes. CTGF facilitated functional gap junction intercellular communication in chondrocytes through up‐regulation of Cx43 expressions. CTGF activated PI3K/Akt signalling to promote Akt phosphorylation and translocation. Suppressing CTGF also reduced the expression of Cx43. The inhibition of PI3K/Akt signalling decreased the expressions of Cx43 and thus impaired gap junction intercellular communication enhanced by CTGF.ConclusionsFor the first time, we provide evidence to show CTGF facilitates cell communication in chondrocytes via PI3K/Akt signalling pathway.  相似文献   

4.
Pannexin1 (Panx1), a protein related to the gap junction proteins of invertebrates, forms nonjunctional channels that open upon depolarization and in response to mechanical stretch and purinergic receptor stimulation. Importantly, ATP can be released through Panx1 channels, providing a possible role for these channels in non-vesicular signal transmission. In this study we expressed exogenous human and mouse Panx1 in the gap junction deficient Neuro2A neuroblastoma cell line and explored the contribution of Panx1 channels to cell–cell communication as sites of ATP release. Electrophysiological (patch clamp) recordings from Panx1 transfected Neuro2A cells revealed membrane conductance that increased beyond 0 mV when applying voltage ramps from −60 to +100 mV; threshold was correlated with extracellular K+, so that at 10 mM K+, channels began to open at −30 mV. Evaluation of cell–cell communication using dual whole cell recordings from cell pairs revealed that activation of Panx1 current in one cell of the pair induced an inward current in the second cell after a latency of 10–20 s. This paracrine response was amplified by an ATPase inhibitor (ARL67156, 100 μM) and was blocked by the ATP-degrading enzyme apyrase (6.7 U/ml), by the P2 receptor antagonist suramin (50 μM) and by the Panx1 channel blocker carbenoxolone. These results provide additional evidence that ATP release through Panx1 channels can mediate nonsynaptic bidirectional intercellular communication. Furthermore, current potentiation by elevated K+ provides a mechanism for enhancement of ATP release under pathological conditions.  相似文献   

5.
Dhein S 《Peptides》2002,23(9):1701-1709
Gap junction channels are low resistance pathways allowing an action potential to propagate from one cell to the neighboring. Moreover, small molecules (<1000 Da) may pass the channel providing a possibility for metabolic coupling, growth and differentiation control of a cell by its surrounding. Antiarrhythmic peptides can enhance the conductivity of the channels while other peptides, angiotensin or extracellular loop peptides, reduce intercellular communication. On the other hand, peptides like angiotensin II or endothelin-1 can increase expression of certain gap junction channel proteins and, thereby, may affect intercellular coupling chronically. Thus, intercellular communication can be controlled using peptide drugs.  相似文献   

6.
Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.  相似文献   

7.
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.  相似文献   

8.
Proliferation and cellular aggregation are both crucial features for survival and self-renewal of primordial germ cells (PGCs). Adhesive proteins play pivotal roles in cell–cell adhesion and signal exchanges under the influence of cytokines, growth factors and bioactive metabolites such as retinoic acid (RA). In this study, proliferation-promoting effect of RA on chicken PGCs was investigated by revealing changes in adhesive proteins E-cadherin and α/β catenins. PGCs were isolated from the genital ridge of 4-day-old chicken embryos and cultured on embryonic fibroblast feeder. RA (10−7–10−5 M) increased PGCs aggregation and mRNA expression of E-cadherin and α/β-catenins. Furthermore, E-cadherin and β-catenin protein expression levels were increased by RA treatment. However, RA-elicited effect was significantly attenuated by a PKC inhibitor H7. In addition, the number and area of PGC colonies were increased by RA treatment at 10−7–10−5 M. Again, this increase was reduced by combined treatment of H7. The proliferating effect of RA on PGCs was further confirmed by increased mRNA expression of cyclins, CCND1 and CCNE1, and cyclin-dependent kinases 6 and 2, which are critical for G1–S progression in cell cycle. Moreover, flow cytometry analysis confirmed that RA-treated PGC populations displayed a significant increase in the proportion of S and G2 phase cells. Likewise, this stimulating action was hindered by combined H7 treatment. These results indicate that RA, as a bioactive metabolite of vitamin A, may promote PGC proliferation and increase intercellular aggregation of PGCs via E-cadherin and α/β-catenins expression through the PKC signaling pathway.  相似文献   

9.
Connexins and their channels in cell growth and cell death   总被引:7,自引:0,他引:7  
Direct communication between cells, mediated by gap junctions, is nowadays considered as an indispensable mechanism in the maintenance of cellular homeostasis. In fact, gap junctional intercellular communication is actively involved in virtually all aspects of the cellular life cycle, ranging from cell growth to cell death. For a long time, it was believed that this was merely a result of the capacity of gap junctions to control the direct intercellular exchange of essential cellular messengers. However, recent data show that the picture is more complicated than initially thought, as structural precursors of gap junctions, connexins and gap junction hemichannels, can affect the cellular homeostatic balance independently of gap junctional intercellular communication. In this paper, we summarize the current knowledge concerning the roles of connexins and their channels in the control of cellular homeostasis, with the emphasis on cell growth and cell death. We also briefly discuss the role of gap junctional intercellular communication in carcinogenesis and the potential use of connexins as tools for cancer therapy.  相似文献   

10.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

11.
In epithelial MDCK cells, the Na,K-ATPase is co-localized with adherens junctions in all stages of monolayer formation starting from initiation of cell–cell contact. The Na,K-ATPase and adherens junction proteins stay partially co-localized even after internalization due to disruption of intercellular contacts by Ca2+ deprivation. Similar to adherens junction proteins, the Na,K-ATPase is resistant to extraction with non-ionic detergent, suggesting pump association with the cytoskeleton. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase β1 subunit and the endogenous α1 subunit is easily dissociated from the adherens junctions and cytoskeleton by detergent extraction. The MDCK cells in which half of the endogenous β1 subunits in the lateral membrane are substituted by unglycosylated β1 subunits display a slower rate of cell-to-cell contact formation and decreased ability to both spread over the surface and migrate. The lack of N-glycans in the Na,K-ATPase β1 subunit results in an impairment of mature cell–cell junctions as detected by an increase in the paracellular permeability of the MDCK cell monolayers and by a decrease in resistance of adherens junction proteins to extraction by a non-ionic detergent. Therefore the N-glycans of the Na,K-ATPase β1 subunit are important for retention of the pump at the sites of cell–cell contact. Moreover, they are important for the integrity and stability of cell–cell junctions in mature epithelia. In addition, N-glycans contribute to the formation of cell–cell contacts between surface-attached dispersed cells by mediating lamellipodia formation and stabilizing the newly formed adherens junctions.  相似文献   

12.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

13.
Gap junction-mediated intercellular coupling is higher in the equatorial region of the lens than at either pole, a property believed to be essential for lens transparency. We show that fibroblast growth factor (FGF) upregulates gap junctional intercellular dye transfer in primary cultures of embryonic chick lens cells without detectably increasing either gap junction protein (connexin) synthesis or assembly. Insulin and insulin-like growth factor 1, as potent as FGF in inducing lens cell differentiation, had no effect on gap junctions. FGF induced sustained activation of extracellular signal-regulated kinase (ERK) in lens cells, an event necessary and sufficient to increase gap junctional coupling. We also identify vitreous humor as an in vivo source of an FGF-like intercellular communication-promoting activity and show that FGF-induced ERK activation in the intact lens is higher in the equatorial region than in polar and core fibers. These findings support a model in which regional differences in FGF signaling through the ERK pathway lead to the asymmetry in gap junctional coupling required for proper lens function. Our results also identify upregulation of intercellular communication as a new function for sustained ERK activation and change the current paradigm that ERKs only negatively regulate gap junction channel activity.  相似文献   

14.
The adrenal medullary tissue contributes to maintain body homeostasis in reaction to stressful environmental changes via the release of catecholamines into the blood circulation in response to splanchnic nerve activation. Accordingly, chromaffin cell stimulus-secretion coupling undergoes temporally restricted periods of anatomo-functional remodeling in response to prevailing hormonal requirements of the organism. The postnatal development of the adrenal medulla and response to stress are remarkable physiological situations in which the stimulus-secretion coupling is critically affected. Catecholamine secretion from rat chromaffin cells is under a dual control involving an incoming initial command arising from the sympathetic nervous system that releases acetylcholine at the splanchnic nerve terminal-chromaffin cell synapses and a local gap junction-mediated intercellular communication. Interestingly, these two communication pathways are functionally interconnected within the gland and exhibit coordinated plasticity mechanisms. This article reviews the physiological and molecular evidence that the adrenal medullary tissue displays anatomical and functional adaptative remodeling of cell–cell communications upon physiological (postnatal development) and/or physiopathological (stress) situations associated with specific needs in circulating catecholamine levels.  相似文献   

15.
Connexins are four-transmembrane-domain proteins expressed in all vertebrates which form permeable gap junction channels that connect cells. Here, we analysed Connexin-43 (Cx43) transport to the plasma membrane and studied the effects of small GTPases acting along the secretory pathway. We show that both GTP- and GDP-restricted Sar1 prevents exit of Cx43 from the endoplasmic reticulum (ER), but only GTP-restricted Sar1 arrests Cx43 in COP II-coated ER exit sites and accumulates 14-3-3 proteins in the ER fraction. FRET-FLIM data confirm that already in ER exit sites Cx43 exists in oligomeric form, suggesting an in vivo role for 14-3-3 in Cx43 oligomerization. Exit of Cx43 from the ER can be blocked by other factors—such as expression of the β subunit of the COP I coat or p50/dynamitin that acts on the microtubule-based dynein motor complex. GTP-restricted Arf1 blocks Cx43 in the Golgi. Lastly, we show that GTP-restricted Arf6 removes Cx43 gap junction plaques from the cell–cell interface and targets them to degradation. These data provide a molecular explanation of how small GTPases act to regulate Cx43 transport through the secretory pathway, facilitating or abolishing cell–cell communication through gap junctions.  相似文献   

16.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

17.
A characteristic property of the vascular smooth muscle cell is its ability to modulate between a contractile phenotype, responsible for control of vascular tone and tension, through to a synthetic phenotype, capable of migration and synthesis of extracellular matrix molecules. Smooth muscle cells are coupled by gap junctions, the membrane structures which permit direct intercellular passage of ions and small molecules, and which play a role both in electrical coupling and intercellular communication during patterning and development. We have previously found that connexin43 type gap junction expression is upregulated in the synthetic phenotype smooth muscle cellin vitroand during atherosclerotic plaque formation in human coronary arteries. On the basis of immunohistochemical labelling, confocal laser scanning microscopy and digital image analysis, we now report that relatively high levels of connexin43 are expressed during development of the rat thoracic aorta, temporally correlating with reported periods of smooth muscle cell proliferation and secretion of elastic laminae. A major peak in expression occurs at seven days post-natal, with a second less pronounced peak at 72 days post-natal. The principal peak in gap junction levels appears to coincide with increased post-natal blood pressure and aorta media thickening. The amount of gap junction labelling falls off to normal adult levels as the smooth muscle cells modulate towards the contractile phenotype and growth is completed. The results indicate an association between direct cell-to-cell communication and synthetic phenotype smooth muscle cell activity during aortic growth and patterning.  相似文献   

18.
Gap junctions mediate cell–cell communication in almost all tissues, but little is known about their regulation by physiological stimuli. Using a novel single-electrode technique, together with dye coupling studies, we show that in cells expressing gap junction protein connexin43, cell–cell communication is rapidly disrupted by G protein–coupled receptor agonists, notably lysophosphatidic acid, thrombin, and neuropeptides. In the continuous presence of agonist, junctional communication fully recovers within 1–2 h of receptor stimulation. In contrast, a desensitization-defective G protein–coupled receptor mediates prolonged uncoupling, indicating that recovery of communication is controlled, at least in part, by receptor desensitization. Agonist-induced gap junction closure consistently follows inositol lipid breakdown and membrane depolarization and coincides with Rho-mediated cytoskeletal remodeling. However, we find that gap junction closure is independent of Ca2+, protein kinase C, mitogen-activated protein kinase, or membrane potential, and requires neither Rho nor Ras activation. Gap junction closure is prevented by tyrphostins, by dominant-negative c-Src, and in Src-deficient cells. Thus, G protein–coupled receptors use a Src tyrosine kinase pathway to transiently inhibit connexin43-based cell–cell communication.  相似文献   

19.
Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell–cell communication and polarizing signaling are intimately connected.  相似文献   

20.
There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli cell proliferation) associated with in vitro experiments on a Sertoli cell line were developed to investigate this question. We demonstrated that the inhibitory effect of T3 on Sertoli cell growth, analyzed by evaluating DNA-incorporated [3H] thymidine, was associated with a time and dose-dependent increase in the levels of Cx43, a constitutive protein of gap junctions, known to participate in the control of cell proliferation and the most predominant Cx in the testis. These Cx43 changes were associated with increased gap junction communication measured by gap FRAP. Consistent with these results two specific inhibitors of gap junction coupling, AGA and oleamide, were able to significantly reverse the T3 inhibitory effect on Sertoli cell proliferation. The present data also revealed a nongenomic effect of T3 on Cx43 Sertoli cells that was evidenced by a rapid up-regulation of gap junction plaque number as identified in Cx43-GFP transfected cells exposed to the hormone. This process appears mediated through actin cytoskeleton since incubation of the cells with cytochalasin D totally reversed the T3 stimulatory effect on Cx43-GFP gap junction plaques. Based on these data, we propose a working hypothesis in which Cx43 could be an intermediate target for T3 inhibition of neonatal Sertoli cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号