首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

2.
The purinergic P2X(7) receptor (P2X(7)R) can mediate glutamate release from cultured astrocytes. Using patch clamp recordings, we investigated whether P2X(7)Rs have the same action in hippocampal astrocytes in situ. We found that 2- and 3-O-(4-benzoylbenzoyl)ATP (BzATP), a potent, although unselective P2X(7)R agonist, triggers two different glutamate-mediated responses in CA1 pyramidal neurons; they are transient inward currents, which have the kinetic and pharmacological properties of previously described slow inward currents (SICs) due to Ca(2+)-dependent glutamate release from astrocytes, and a sustained tonic current. Although SICs were unaffected by P2X(7)Rs antagonists, the tonic current was inhibited, was amplified in low extracellular Ca(2+), and was insensitive to glutamate transporter and hemichannel inhibitors. BzATP triggered in astrocytes a large depolarization that was inhibited by P2X(7)R antagonists and amplified in low Ca(2+). In low Ca(2+) BzATP also induced lucifer yellow uptake into a subpopulation of astrocytes and CA3 neurons. Our results demonstrate that purinergic receptors other than the P2X(7)R mediate glutamate release that evokes SICs, whereas activation of a receptor that has features similar to the P2X(7)R, mediates a sustained glutamate efflux that generates a tonic current in CA1 neurons. This sustained glutamate efflux, which is potentiated under non-physiological conditions, may have important pathological actions in the brain.  相似文献   

3.
Transient currents occur at rest in cortical neurones that reflect the quantal release of transmitters such as glutamate and gamma-aminobutyric acid (GABA). We found a bimodal amplitude distribution for spontaneously occurring inward currents recorded from mouse pyramidal neurones in situ, in acutely isolated brain slices superfused with picrotoxin. Larger events were blocked by glutamate receptor (AMPA, kainate) antagonists; smaller events were partially inhibited by P2X receptor antagonists suramin and PPADS. The decay of the larger events was selectively prolonged by cyclothiazide. Stimulation of single intracortical axons elicited quantal glutamate-mediated currents and also quantal currents with amplitudes corresponding to the smaller spontaneous inward currents. It is likely that the lower amplitude spontaneous events reflect packaged ATP release. This occurs with a lower probability than that of glutamate, and evokes unitary currents about half the amplitude of those mediated through AMPA receptors. Furthermore, the packets of ATP appear to be released from vesicle in a subset of glutamate-containing terminals.  相似文献   

4.
Neuronally enriched primary cerebrocortical cultures were exposed to glucose-free medium saturated with argon (in vitro ischemia) instead of oxygen (normoxia). Ischemia did not alter P2X7 receptor mRNA, although serum deprivation clearly increased it. Accordingly, P2X7 receptor immunoreactivity (IR) of microtubuline-associated protein 2 (MAP2)-IR neurons or of glial fibrillary acidic protein (GFAP)-IR astrocytes was not affected; serum deprivation augmented the P2X7 receptor IR only in the astrocytic, but not the neuronal cell population. However, ischemia markedly increased the ATP- and 2'-3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP)-induced release of previously incorporated [3H]GABA. Both Brilliant Blue G and oxidized ATP inhibited the release of [3H]GABA caused by ATP application; the Brilliant Blue G-sensitive, P2X7 receptor-mediated fraction, was much larger after ischemia than after normoxia. Whereas ischemic stimulation failed to alter the amplitude of ATP- and BzATP-induced small inward currents recorded from a subset of non-pyramidal neurons, BzATP caused a more pronounced increase in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) after ischemia than after normoxia. Brilliant Blue G almost abolished the effect of BzATP in normoxic neurons. Since neither the amplitude of mIPSCs nor that of the muscimol-induced inward currents was affected by BzATP, it is assumed that BzATP acts at presynaptic P2X7 receptors. Finally, P2X7 receptors did not enhance the intracellular free Ca2+ concentration either in proximal dendrites or in astrocytes, irrespective of the normoxic or ischemic pre-incubation conditions. Hence, facilitatory P2X7 receptors may be situated at the axon terminals of GABAergic non-pyramidal neurons. When compared with normoxia, ischemia appears to markedly increase P2X7 receptor-mediated GABA release, which may limit the severity of the ischemic damage. At the same time we did not find an accompanying enhancement of P2X7 mRNA or protein expression, suggesting that receptors may become hypersensitive because of an increased efficiency of their transduction pathways.  相似文献   

5.
Using intracellular recording, we studied the effects of N-uronoyl derivatives of an amino acid and peptides (1,2:3,4-di-O-isopropylidene-αa-D-galactopyranuronoyl)-β-alanine (DAGU-Ala), DAGU-glycyl-glycine (DAGU-Gly-Gly), DAGU-glycyl-D,L-glutamic acid (DAGU-Gly-Glu), as well as of 1,2:3,4-di-O-isopropylidene-αa-D-galactopyranosyluronic acid (DAGU itself), β-alanine (β-Ala), D,L-glutamic acid (D,L-Glu), and glycyl-glycine (Gly-Gly), which were added to the extracellular milieu, on the electrical activity of PPa1 and PPa2 neurons and unidentified neurons of Helix albescens Rossm. DAGU-Gly-Gly applied in concentrations of 10−4 to 10−2 M hyperpolarized the membrane in a dose-dependent manner and decreased insignificantly the amplitude of action potentials (APs). Applications of DAGU-Ala, β-Ala, DAGU-Gly-Glu, D,L-Glu, and Gly-Gly in the same doses resulted in a shift of the membrane potential toward depolarization and in a drop in the amplitude of APs. Measurements of the first AP derivatives showed that all the above-mentioned substances suppressed in a concentration-dependent manner both inward and outward transmembrane ion currents. In this case, DAGU suppressed both inward and outward currents, while DAGU-Ala, β-Ala, DAGU-Glu, D,L-Glu, and Gly-Gly inhibited predominantly the outward potassium ion current; DAGU-Gly-Gly inhibited inward sodium and potassium ion currents. Results of a comparative analysis of the neurotropic action of the tested amino acids and their N-uronoyl derivatives showed that modification of the molecules of neurotransmitter amino acids leads to a decrease in their neurotoxicity and to an increase in their membranotropic properties. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 416–425, September–December, 2006.  相似文献   

6.
Current responses from CA1 neurons and stratum oriens astrocytes were recorded from hippocampal brain slices by means of the whole-cell patch-clamp technique. Anoxic depolarization (AD) was induced by an oxygen/glucose-deprived (OGD) medium also containing sodium iodoacetate and antimycin, in order to block glycolysis and oxidative phosphorylation, respectively. Anoxic depolarization has been reported to be due to the sudden increase of the extracellular K+ concentration and the accompanying explosive rise in glutamate concentration. We asked ourselves whether the release of ATP activating P2X7 receptors is also involved in the AD. Although, the AD was evoked in absolute synchrony in neurons and astrocytes, and the NMDA receptor antagonistic AP-5 depressed these responses, neither the non-selective P2 receptor antagonist PPADS, nor the highly selective P2X7 receptor antagonist A438079 interfered with the AD or its delay time in neurons/astrocytes after inducing chemical hypoxia. However, A438079, but not PPADS increased in astrocytes the slow inward current observed in a hypoxic medium. It is concluded that ATP co-released with glutamate by hypoxic stimulation has only a minor function in the present brain slice system.  相似文献   

7.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

8.
Activation of P2X receptors by a Ca2+- and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-dependent release of ATP was measured using patch-clamp recordings from dissociated guinea pig stellate neurons. Asynchronous transient inward currents (ASTICs) were activated by depolarization or treatment with the Ca2+ ionophore ionomycin (1.5 and 3 µM). During superfusion with a HEPES-buffered salt solution containing 2.5 mM Ca2+, depolarizing voltage steps (–60 to 0 mV, 500 ms) evoked ASTICs on the decaying phase of a larger, transient inward current. Equimolar substitution of Ba2+ for Ca2+ augmented the postdepolarization frequency of ASTICs, while eliminating the larger transient current. Perfusion with an ionomycin-containing solution elicited a sustained activation of ASTICs, allowing quantitative analysis over a range of holding potentials. Under these conditions, increasing extracellular [Ca2+] to 5 mM increased ASTIC frequency, whereas no events were observed following replacement of Ca2+ with Mg2+, demonstrating a Ca2+ requirement. ASTICs were Na+ dependent, inwardly rectifying, and reversed near 0 mV. Treatment with the nonselective purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (10 µM) blocked all events under both conditions, whereas the ganglionic nicotinic antagonist hexamethonium (100 µM and 1 mM) had no effect. PPADS also blocked the macroscopic inward current evoked by exogenously applied ATP (300 µM). The presence of botulinum neurotoxin E (BoNT/E) in the whole-cell recording electrode significantly attenuated the ionomycin-induced ASTIC activity, whereas phorbol ester treatment potentiated this activity. These results suggest that ASTICs are mediated by vesicular release of ATP and activation of P2X receptors. sympathetic; purinergic; neurotransmission; phorbol ester; botulinum toxin  相似文献   

9.
Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2X(f)) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2X(f) was inhibited by suramin, PPADS and TNP-ATP. Activation of P2X(f) attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2X(f) plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2X(f) inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells.  相似文献   

10.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

11.
Wan YH  Wang YY  Dai F  Hu SJ 《生理学报》2004,56(4):550-557
本文描述了用明胶半包埋法制备带背根脊髓薄片的实验步骤,和在脊髓背角记录由初级传入纤维介导的突触后电流的可视膜片钳法。手术制备一段带背根的脊髓标本,并用20%的明胶包埋在琼脂块上,再用振动切片机切片获得带背根的脊髓薄片。通过红外线可视的引导,在脊髓背角神经元上建立全细胞封接模式。在钳制电压为-70mV条件下,记录自发的和背根刺激引起的兴奋性突触后电流。以传入纤维的传导速度与刺激阈值为指标,可以区分A样纤维与C样纤维兴奋性突触后电流。在钳制电压为0mV条件下,记录自发的和背根刺激引起的抑制性突触后电流。用5μmol/L的士宁或20μmol/L的荷包牡丹碱分离出γ-氨基丁酸能或甘氨酸能的抑制性突触后电流。用可视膜片钳方法可以准确测量脊髓背角神经元的突触后电流,从而研究初级传入突触的传递过程。更重要的是,在红外线可视观察的帮助下,建立膜片钳封接的成功率显著提高,同时也使记录研究脊髓背角深层神经元变得更加容易。本研究为探索初级传入突触传递过程提供了一个有效的方法。  相似文献   

12.
Effects of exogenous adenosine 5′-triphosphate (ATP) on dissociated guinea pig ileum submucous neurons were studied using a conventional whole-cell patch-clamp technique. With the holding potential of −50 mV, application of 50–1,000 μM ATP evoked an inward current (ATP-induced current) in most (90%) of the tested neurons (n-35). ATP-induced currents were observed regardless of whether or not guanosine 5′-triphosphate (GTP, 0.2 mM) and ATP (2 mM) were present in the intracellular solution, or GTP was replaced with equimolar concentration of guanosine 5′-O-3-thiotriphosphate (n-5). In 26 of 29 neurons studied, which responded to ATP, applications of 50–1,000 μM ATP induced slowly declining currents. ATP receptors did not appear to be completely desensitized during a long pulse (up to 4 min) of 200 μM ATP. Suramin (200 μM) accelerated an increase to peak of the current induced by 200 μM ATP without affecting the maximum response amplitude (n−4_. In about 10% of the neuronsn−3), 50 μM ATP evoked rapidly declining (about 1 sec) currents. Application of 100 μM α,β-Me-ATP to these neurons evoked similar responses. The above results suggest that submucous neurons express two specific subtypes of ionotropic P2x-purinoceptors, which might be involved in distinct excitatory processes in these neurons.  相似文献   

13.
Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.  相似文献   

14.
We examined the effects of TRPV1 agonists olvanil and piperine on glutamatergic spontaneous excitatory transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices with the whole-cell patch-clamp technique. Bath-applied olvanil did not affect the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC), and unchanged holding currents at −70 mV. On the other hand, superfusing piperine reversibly and concentration-dependently increased sEPSC frequency (half-maximal effective concentration: 52.3 μM) with a minimal increase in its amplitude. This sEPSC frequency increase was almost repetitive at an interval of more than 20 min. Piperine at a high concentration produced an inward current in some neurons. The facilitatory effect of piperine was blocked by TRPV1 antagonist capsazepine. It is concluded that piperine but not olvanil activates TRPV1 channels in the central terminals of primary-afferent neurons, resulting in an increase in the spontaneous release of l-glutamate onto SG neurons.  相似文献   

15.
ATP is considered to impact on fast synaptic transmission in several regions of the CNS, including the CA1 and CA3 areas of the hippocampus. The existing paradigm suggests that ATP induces synaptic responses in CA3 pyramidal cells, and a fast ATP-mediated component is observed in cultured hippocampal slices mainly under conditions of a synchronous discharge from multiple presynaptic inputs. We confirmed the existence of a fast ATP-mediated component within electrically evoked EPSCs (eEPSCs) in CA3 neurons of acute slices of the rat hippocampus using a whole-cell patch-clamp recording mode. In approximately 50% of the examined cells, eEPSCs were not completely inhibited by co-applied glutamate receptor antagonists, NBQX (50 μM) and D-APV (25 μM). The residual current was sensitive to ionotropic P2X receptor antagonists, such as suramin (25 μM) and NF023 (2 μM). Known purinergic receptor modulators, ivermectin (10 μM) and PPADS (10 μM), practically did not affect EPSCs, whereas a nonhydrolyzable ATP analog, ATPγS (100 μM), slightly decreased the EPSC amplitude. Moreover, ATPγS (100 μM) at a holding potential of −70 mV generated a slow inward current in most recorded neurons, which was insensitive to glutamate receptor antagonists. This fact is indicative of the ionotropic P2X receptor activation. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 21–29, January–February, 2008.  相似文献   

16.
Postsynaptic currents and action potentials recorded from neurons in a mixed culture of rat dorsal root ganglion and spinal cord cells are described. The existence of mutual synaptic connections between the above two types of neurons is demonstrated. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 358–360, July–August, 2006.  相似文献   

17.
IL-2 receptor signaling through the Shb adapter protein in T and NK cells   总被引:5,自引:0,他引:5  
We have investigated the effect of hypoxia on the excitatory synaptic transmission in the substantia gelatinosa neurons using perforated-patch-clamp configuration. Brief periods of hypoxia induced a depression in the evoked excitatory postsynaptic current (eEPSC) amplitude. The hypoxia-induced depression of eEPSC was not observed in the presence of theophylline, a nonselective adenosine receptor antagonist, and DPCPX, a selective adenosine receptor A1 antagonist. Application of adenosine (100 microM) also depressed eEPSC in a similar way as with hypoxia. This adenosine-induced depression of eEPSC was inhibited by DPCPX. Hypoxia and exogenous adenosine decreased the frequency of the spontaneous excitatory postsynaptic current (sEPSC) but not the amplitude of sEPSC and increased the paired-pulse ratio. From these results, it is suggested that acute hypoxia depresses the excitatory synaptic transmission by activating the presynaptic adenosine A1 receptor.  相似文献   

18.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

19.
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.  相似文献   

20.
A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号