首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. HYPOTHESIS: Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. DESIGN: Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. RESULTS: The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). CONCLUSIONS: The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.  相似文献   

2.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

3.
Small changes in lipogenic enzyme activity induced by dietary fats of different composition may, over the long term, have significant impact on the development of obesity. We have investigated the effect of high fat diets (45% of calories as fat) on abundance of mRNA encoding fatty acid synthetase (FAS) and glycerophosphate dehydrogenase (GPDH) in male Sprague-Dawley rats. When caloric intake was equal, the relative amount of hepatic FAS mRNA was greater in rats fed a saturated compared to a polyunsaturated fat diet. This difference could not be attributed to diet-induced changes in plasma insulin concentration. However, both fat diets suppressed hepatic FAS mRNA compared to a sucrose diet. Close correlation between FAS specific activity and the relative amount of mRNA suggested that regulation was mainly at a pre-translational level. Adipose tissue FAS mRNA was suppressed by the two fat diets equally while GPDH mRNA was unaffected by dietary composition. Retroperitoneal fat pads were significantly larger in rats fed saturated compared to those fed polyunsaturated fat for 26 weeks. We concluded that dietary saturated fats fail to suppress hepatic de novo lipogenesis as effectively as polyunsaturated fats, which may have implications for the prevention of obesity in humans.  相似文献   

4.
In Sprague-Dawley rats, fatty acid synthase (FAS) activity is suppressed by dietary fat. To test the hypothesis that a defect in regulation of de novo fatty acid synthesis exists in massive obesity, we investigated the effect of diet on FAS mRNA levels in genetically obese JCR:LA-corpulent (cp) rats. We also determined levels of mRNA encoding adipsin, a fat cell-derived protein possibly associated with lipid metabolism. Hepatic FAS mRNA levels were elevated five-fold in obese compared to lean cp rats and were unsuppressed by dietary fat. Dietary sucrose increased FAS mRNA levels in lean cp rats, but, in contrast to Sprague-Dawley rats, little deposition of lipid resulted. Adipsin mRNA levels were fivefold lower in obese cp and Sprague-Dawley rats than in lean cp rats and were unaffected by diet. We conclude that exaggerated de novo fatty acid synthesis may play a major role in the pathogenesis of obesity in obese JCR:LA-corpulent rats.  相似文献   

5.
Lipogenesis is considered less active in human than in rat adipose tissue. This could be explained by different nutritional conditions, namely high-carbohydrate (HCHO) diet in rats and high-fat (HF) diet in humans. Adipose tissue was sampled (postabsorptive state) in rats and humans receiving HCHO or HF diets, ad libitum fed humans, and obese subjects. We measured 1) mRNA concentrations of fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), sterol regulatory element binding protein 1c (SREBP-1c), and carbohydrate response element binding protein (ChREBP), 2) SREBP-1c protein, and 3) FAS activity. FAS, ACC1, ChREBP, and SREBP1-c mRNA concentrations were unaffected by diet in humans or in rats. FAS and ACC1 mRNA levels were lower in humans than in rats (P < 0.05). FAS activity was unaffected by diet and was lower in humans (P < 0.05). SREBP-1c mRNA concentrations were similar in rats and humans, but the precursor and mature forms of SREBP-1c protein were less abundant in humans (P < 0.05). ChREBP mRNA concentrations were lower in humans than in rats. In conclusion, the lipogenic capacity of adipose tissue is lower in humans than in rats. This is not related to differences in diet and is probably explained by lower abundance of SREBP-1c protein. A decreased expression of ChREBP could also play a role.  相似文献   

6.
7.
采用高效的由mRNA合成cDNA的方法,我们得到了含有3.7kb的脂肪酸合成酶基因片段的克隆pFAS_(203)。它具有限制内切酶PstⅠ、BamH Ⅰ、HineⅡ、PvuⅡ、Ava Ⅰ以及Pvu Ⅰ酶切位点,与已经得到的经杂交选择的mRNA离体翻译产物鉴定的cDNA克隆pFAS_(15)有部分重叠。对饥饿的糖尿病大鼠注射胰岛素并饲以无脂食物,肝中FAS mRNA以及其前体RNA含量增加,当注射后再饲无脂食物达12小对,肝中FASmRNA及其前体RNA约为糖尿病鼠的30倍。Poly(A)~+ RNA的Northern分析表明诱导期间FASmRNA含量增加而其分子大小不变。这些结果表明胰岛素对FAS基因的转录有调节作用。胰岛素诱导后的脂肪酸合成酶活性升高是在转录水平上调节的。  相似文献   

8.
Dietary induced obesity in rodents is associated with a resistance to leptin. We have investigated the hypothesis that dietary fat per se alters the feeding response to peripheral leptin in rats that were fed either their habitual high- or low-fat diet or were naively exposed to the alternative diet. Osborne-Mendel rats were adapted to either high- or low-fat diet. Food-deprived rats were given either leptin (0.5 mg/kg body wt ip) or saline, after which they were provided with either their familiar diet or the alternative diet. Food intake of rats adapted and tested with the low-fat diet was reduced 4 h after leptin injection, whereas rats adapted and tested with a high-fat diet did not respond to leptin. Leptin was injected again 1 and 5 days after the high-fat diet-adapted rats were switched to the low-fat diet. Leptin reduced the food intake on both days. In contrast, when low-fat diet-adapted rats were switched to a high-fat diet, the leptin inhibitory response was present on day 1 but not observed on day 5. Peripheral injection of leptin increased serum corticosterone level and decreased hypothalamic neuropeptide Y mRNA expression in rats fed the low-fat but not the high-fat diet for 20 days. The data suggest that dietary fat itself, rather than obesity, may induce leptin resistance within a short time of exposure to a high-fat diet.  相似文献   

9.
This article provides a theoretical treatment of hunter–gatherer diet and physiology. Through a synthesis of nutritional studies, informed by ethno-archaeological data, we examine the risk of protein-rich diets for human survival, and how societies circumvent "salmon starvation" in the northeastern Pacific Rim. Fundamental nutritional constraints associated with salmon storage and consumption counter long-standing assumptions about the engine of cultural evolution in the region. Excess consumption of lean meat can lead to protein poisoning, termed by early explorers “rabbit starvation.” While consumption of fats and carbohydrates is widely portrayed as a pathway to “offsetting” protein thresholds, there are true limits to the amount of protein individuals can consume, and constraints are most extreme for smaller individuals, children, and pregnant/nursing mothers. While this problem is not usually perceived as associated with fish, the risk of protein poisoning limits the amount of low-fat fish that people can eat safely. Compared with smaller, mass-harvested species (e.g., eulachon), dried salmon are exceedingly lean. Under certain circumstances fattier foods (small forage fish, marine mammals, whales, and even bears) or carbohydrate-rich plants may have been preferred not just for taste but to circumvent this “dietary protein ceiling.” Simply put, “salmon specialization” cannot evolve without access to complimentary caloric energy through fat-rich or carbohydrate-rich resources. By extension, the evolution of storage-based societies requires this problem be solved prior to or in tandem with-salmon intensification. Without such solutions, increased mortality and reproductive rates would have made salmon reliance unsustainable. This insight is in line with genomic research suggesting protein toxicity avoidance was a powerful evolutionary force, possibly linked to genetic adaptations among First Americans. It is also relevant to evaluating the plausibility of other purportedly “focal” economies and informs understanding of the many solutions varied global societies have engineered to overcome physiological protein limits.  相似文献   

10.
11.
12.
Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.  相似文献   

13.
Some, but not all, fats are obesogenic. The aim of the present studies was to investigate the effects of changing type and amount of dietary fats on energy balance, fat deposition, leptin, and leptin-related neural peptides: leptin receptor, neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC), in C57Bl/6J mice. One week of feeding with a highly saturated fat diet resulted in ~50 and 20% reduction in hypothalamic arcuate NPY and AgRP mRNA levels, respectively, compared with a low-fat or an n-3 or n-6 polyunsaturated high-fat (PUFA) diet without change in energy intake, fat mass, plasma leptin levels, and leptin receptor or POMC mRNA. Similar neuropeptide results were seen at 7 wk, but by then epididymal fat mass and plasma leptin levels were significantly elevated in the saturated fat group compared with low-fat controls. In contrast, fat and leptin levels were reduced in the n-3 PUFA group compared with all other groups. At 7 wk, changing the saturated fat group to n-3 PUFA for 4 wk completely reversed the hyperleptinemia and increased adiposity and neuropeptide changes induced by saturated fat. Changing to a low-fat diet was much less effective. In summary, a highly saturated fat diet induces obesity without hyperphagia. A regulatory reduction in NPY and AgRP mRNA levels is unable to effectively counteract this obesogenic drive. Equally high fat diets emphasizing PUFAs may even protect against obesity.  相似文献   

14.
15.
The impact of a low-fat diet and a high-MUFA diet on apolipoprotein A-I (apoA-I), apoA-II, and VLDL-apoB-100 metabolism in conditions of unrestricted (ad libitum) energy intake was compared in 65 men randomly assigned to one of two predefined experimental diets. A subsample of 18 men participated in the kinetic study. Before and after the 6-7 week dietary intervention, kinetic subjects received a primed-constant infusion of [5,5,5-2H3]L-leucine for 12 h under feeding conditions. ApoA-I production rate (PR; -31.5%; P <0.001) and fractional catabolic rate (FCR; -24.3%; P <0.05) were significantly decreased after the low-fat diet. These changes in apoA-I PR and FCR with the low-fat diet were also significantly different from those observed with the high-MUFA diet (P <0.01 and P <0.05, respectively). ApoA-II FCR was significantly increased in the high-MUFA group only. No significant within- or between-diet difference was found in VLDL-apoB-100 PR or FCR. These results emphasize the differential impact of the low-fat diet and high-MUFA diet on HDL metabolism.  相似文献   

16.
Rats carrying one copy of the fa allele are predisposed to diet-induced metabolic disturbances which contribute to hyperinsulinemia, obesity and dyslipidemia. To investigate the role of dietary carbohydrate and fat in the development of these conditions, we fed 6-week old male heterozygous (fa/+) lean rats carbohydrate-free diets containing primarily saturated fat either ad libitum or pair-fed. These diets were compared to standard chow and to a high saturated fat mixed diet containing 10% energy from sucrose for 4 weeks. The carbohydrate-free diet resulted in significantly lower circulating glucose levels compared to all other groups (p = 0.006). Weight gain was negligible in the carbohydrate free groups compared to standard diet and 10% sucrose diet (p = 0.03). This was reflected in energy efficiency which was markedly reduced (90%) in the carbohydrate-free groups compared to the other groups (p = 0.04). Corresponding changes were noted in fat pad mass. The subscapular and epididymal fat pads were increased 42% and 44%, respectively, in animals consuming the 10% sucrose diet compared to all other groups (p < 0.01). Comparable changes in fatty acid synthase (FAS) mRNA were observed in response to the carbohydrate-free diet, which resulted in a 53% decrease in adipocyte FAS mRNA (p < 0.001). Addition of 10% sucrose to the diet completely reversed this effect resulting in a 69% increase in adipocyte FAS mRNA compared to the carbohydrate-free groups (p = 0.01). Similarly, hepatic FAS mRNA was elevated by 51% and 66% in the 10% sucrose and standard diet groups respectively, compared to the carbohydrate-free groups. Therefore, diets that contain minimal carbohydrate may minimize net lipid storage and adiposity.  相似文献   

17.
18.
The effect of the dietary fiber on apo B mRNA level was studied in the intestine of rats that were fed either fiber-free or high-fiber (30% sugar-beet fiber) low-fat diets for 3 weeks. The fiber diet studied does not affect jejunal apo B mRNA levels but decreases the level of ileal apo B mRNA. In the rat cecum, in both fiber-free and fiber groups, we failed to detect the apo B mRNA. The test fiber diet feeding markedly increased fecal bile salt and cholesterol excretions. We suggest that dietary fiber can modify apo B expression in the intestine. The increased fecal bile salt excretion might be involved in such a modification.  相似文献   

19.
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation. Presented in part at Experimental Biology, April 2006, San Francisco, CA [Kirchner S., Panserat S., Kaushik S. and Ferraris R. FASEB-IUPS-2006 A667.6].  相似文献   

20.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号