首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
2.
3.
The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA-damaging agents.  相似文献   

4.
5.
Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53(K317R) mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53(K317R) MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53(K317R) thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53(K317R) thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.  相似文献   

6.
7.
DNA polymerase eta (PolH) is the product of the xeroderma pigmentosum variant (XPV) gene and a well-characterized Y-family DNA polymerase for translesion synthesis. Cells derived from XPV patients are unable to faithfully bypass UV photoproducts and DNA adducts and thus acquire genetic mutations. Here, we found that PolH can be up-regulated by DNA breaks induced by ionizing radiation or chemotherapeutic agents, and knockdown of PolH gives cells resistance to apoptosis induced by DNA breaks in multiple cell lines and cell types in a p53-dependent manner. To explore the underlying mechanism, we examined p53 activation upon DNA breaks and found that p53 activation is impaired in PolH knockdown cells and PolH-null primary fibroblasts. Importantly, reconstitution of PolH into PolH knockdown cells restores p53 activation. Moreover, we provide evidence that, upon DNA breaks, PolH is partially colocalized with phosphorylated ATM at gamma-H2AX foci and knockdown of PolH impairs ATM to phosphorylate Chk2 and p53. However, upon DNA damage by UV, PolH knockdown cells exhibit two opposing temporal responses: at the early stage, knockdown of PolH suppresses p53 activation and gives cells resistance to UV-induced apoptosis in a p53-dependent manner; at the late stage, knockdown of PolH suppresses DNA repair, leading to sustained activation of p53 and increased susceptibility to apoptosis in both a p53-dependent and a p53-independent manner. Taken together, we found that PolH has a novel role in the DNA damage checkpoint and that a p53 target can modulate the DNA damage response and subsequently regulate p53 activation.  相似文献   

8.
Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.  相似文献   

9.
Adimoolam S  Ford JM 《DNA Repair》2003,2(9):947-954
  相似文献   

10.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

11.
12.
13.
14.
Previous studies have shown that lungs of adult mice exposed to >95% oxygen have increased terminal deoxyribonucleotidyltransferase dUTP nick end-label staining and accumulate p53, the expression of which increases in cells exposed to DNA-damaging agents. The present study was designed to determine whether hyperoxia also increased expression of the growth arrest and DNA damage (GADD) gene 45 and GADD153, which are induced by genotoxic stress through p53-dependent and -independent pathways. GADD proteins have been shown to inhibit proliferation and stimulate DNA repair and/or apoptosis. GADD45 and GADD153 mRNAs were not detected in lungs exposed to room air but were detected after 48 and 72 h of exposure to hyperoxia. In situ hybridization and immunohistochemistry revealed that hyperoxia increased GADD45 and GADD153 expression in the bronchiolar epithelium and GADD45 expression predominantly in alveolar cells that were morphologically consistent with type II cells. Hyperoxia also increased GADD expression in p53-deficient mice. Terminal deoxyribonucleotidyltransferase dUTP nick end-label staining of lung cells from p53 wild-type and p53-null mice exposed to hyperoxia for 48 h revealed that hyperoxia-induced DNA fragmentation was not modified by p53 deficiency. These studies are consistent with the hypothesis that hyperoxia-induced DNA fragmentation is associated with the expression of GADD genes that may participate in DNA repair and/or apoptosis.  相似文献   

15.
16.
A functional DNA damage response is essential for maintaining genome integrity in the presence of DNA double-strand breaks. It is mainly coordinated by the kinases ATM, ATR, and DNA-PKcs, which control the repair of broken DNA strands and relay the damage signal to the tumor suppressor p53 to induce cell cycle arrest, apoptosis, or senescence. Although many functions of the individual kinases have been identified, it remains unclear how they act in concert to ensure faithful processing of the damage signal. Using specific inhibitors and quantitative analysis at the single-cell level, we systematically characterize the contribution of each kinase for regulating p53 activity. Our results reveal a new regulatory interplay in which loss of DNA-PKcs function leads to hyperactivation of ATM and amplification of the p53 response, sensitizing cells for damage-induced senescence. This interplay determines the outcome of treatment regimens combining irradiation with DNA-PKcs inhibitors in a p53-dependent manner.  相似文献   

17.
Upon treatment with some DNA damaging agents, human H1299 tumor-derived cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53Q22/S23) undergo apoptosis. In cells expressing either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Furthermore, silencing of PIDD (a factor previously shown to be required for caspase 2 activation) by siRNA suppresses apoptosis by both wild-type p53 and p53Q22/S23. Despite the finding that caspase 2 is essential for DNA damage-facilitated, p53-mediated apoptosis, induction of wild-type p53 (with or without DNA damage) resulted in a reduction of caspase 2 mRNA and protein levels. In this study we sought to provide a mechanism for the negative regulation of caspase 2 by p53 as well as provide insight as to why p53 may repress a key mediator of p53-dependent apoptosis. Mechanistically, we show that DNA binding and/or transactivation domains of p53 are crucial for mediating transrepression. Further, expression of p21 (in p53-null cells inducibly expressing p21) is sufficient to mediate repression of caspase 2. Deletion of p21 or E2F-1 not only abrogated repression of caspase 2, but also stimulated the expression of caspase 2 above basal levels, implicating the requirement for an intact p21/Rb/E2F pathway in the down-regulation of caspase 2. As this p53/p21-dependent repression of caspase 2 can occur in the absence of DNA damage, caspase 2 repression does not simply seem to be a consequence of the apoptotic process. Down-regulation of caspase 2 levels by p53 may help to determine cell fate by preventing cell death when unnecessary.  相似文献   

18.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   

19.
20.
Mitotic arrest induced by antimitotic drugs can cause apoptosis or p53-dependent cell cycle arrest. It can also cause DNA damage, but the relationship between these events has been unclear. Live, single-cell imaging in human cancer cells responding to an antimitotic kinesin-5 inhibitor and additional antimitotic drugs revealed strong induction of p53 after cells slipped from prolonged mitotic arrest into G1. We investigated the cause of this induction. We detected DNA damage late in mitotic arrest and also after slippage. This damage was inhibited by treatment with caspase inhibitors and by stable expression of mutant, noncleavable inhibitor of caspase-activated DNase, which prevents activation of the apoptosis-associated nuclease caspase-activated DNase (CAD). These treatments also inhibited induction of p53 after slippage from prolonged arrest. DNA damage was not due to full apoptosis, since most cytochrome C was still sequestered in mitochondria when damage occurred. We conclude that prolonged mitotic arrest partially activates the apoptotic pathway. This partly activates CAD, causing limited DNA damage and p53 induction after slippage. Increased DNA damage via caspases and CAD may be an important aspect of antimitotic drug action. More speculatively, partial activation of CAD may explain the DNA-damaging effects of diverse cellular stresses that do not immediately trigger apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号