首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Fatty acid binding activity associated with a 14,000-15,000 mol. wt protein was observed in the cytosolic fraction of liver, duodenum, myocardium, adipose, pectoral and gastrocnemius muscles of chickens. 2. Polyclonal antisera prepared against chicken liver fatty acid binding protein affinity for only liver FABP and a 14,000 mol. wt fatty acid binding protein in the intestine. 3. A fatty acid binding protein was not detected in chicken plasma.  相似文献   

2.
A protein fraction with fatty acid binding activity has been isolated from mammary tissue from lactating rats by a process involving DEAE-cellulose ion-exchange chromatography, heat treatment, CM-cellulose ion-exchange chromatography and finally ammonium sulphate precipitation. The purified fraction migrated as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 14400. However, when this protein fraction was electrophoresed under non-dissociating conditions, two species were observed in a 4:1 ratio. The two components were separated using h.p.l.c. Both bind fatty acids and appear to have similar amino acid compositions although exhibiting different pI values of 4.8 and 4.9. The mammary fatty acid binding proteins appear to be very similar to the fatty acid binding protein isolated from rat heart based on the electrophoretic mobilities and amino acid composition. The major mammary form (pI 4.9) has been partially sequenced and the amino acid sequences obtained can be aligned with 67 residues of the revised rat heart amino acid sequence [Heuckeroth, Birkenmeier, Levin & Gordon (1987) J. Biol. Chem. 262, 9709-9717]. Both mammary species also showed immunochemical identity to rat heart fatty acid binding protein when tested with an anti-serum raised against the heart protein. Anti-sera raised against the minor mammary form (pI 4.8) specifically precipitated this form under non-denaturing conditions but both forms after they had been denatured. Quantitative immunoassays using the anti-(heart fatty acid binding protein) serum showed that concentrations of the fatty acid binding proteins present in mammary cytosols increase during lactation and increase further after feeding a high-fat diet.  相似文献   

3.
Summary For evaluation whether the membrane fatty acid-binding protein is related to mGOT, studies on the structure and function of both purified proteins were performed. Physicochemical characterization revealed that both proteins are different: the membrane fatty acid-binding protein has a molecular weight of 40 kD and a pI of 8.5–9.0, whereas rat mGOT has a molecular weight of 44 kD and a pI of 9.5–10.0. According to this distinct differences, they migrated separately on 2-dimensional electrophoresis. Furthermore, monospecific antibodies against the membrane fatty acid binding protein did not react with rat mGOT. In co-chromatography studies only the membrane fatty acid-binding protein showed affinity for long chain fatty acids, but not mGOT. Moreover, membrane binding studies were performed with the monospecific antibody to the membrane fatty acid binding protein. The inhibitory effect of this antibody on plasma membrane binding of oleate was reversed after preabsorption of the antibody with the membrane fatty acid binding protein, but was not affected after preabsorption with mGOT. These results indicate that the membrane fatty acid binding protein and mGOT are structurally and functionally not related. The data also support the significance of this membrane protein in the plasma membrane binding process of long chain fatty acids.  相似文献   

4.
Abstract: Two fatty acid binding proteins (FABPs) were isolated from Swiss Webster mouse brains. Neither protein cross-reacted with antisera to recombinant liver L-FABP. One protein, designated brain H-FABP, migrated on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a single band at 14.5 kDa with pl 4.9. Brain H-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.02 and 0.5 µ M , respectively. Brain H-FABP cross-reacted with affinity-purified antisera to recombinant heart H-FABP. The second protein, mouse brain B-FABP, migrated on tricine SDS-PAGE gels as a doublet at 16.0 and 15.5 kDa with pl values of 4.5 and 4.7, respectively. Brain B-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.01 and 0.7 µ M , respectively. The brain B-FABP doublet was immunoreactive with affinity-purified antibodies against recombinant mouse brain B-FABP, but not with affinity-purified antibodies against heart H-FABP. [3H]Oleate competition binding indicated that the two brain FABPs had distinct ligand binding specificities. Both bound fatty acids, fatty acyl CoA, and lysophosphatidic acid. Although both preferentially bound unsaturated fatty acids, twofold differences in specific saturated fatty acid binding were observed. Brain B-FABP and brain H-FABP represented 0.1 and 0.01% of brain total cytosolic protein, respectively. In summary, mouse brain contains two native fatty acid binding proteins, brain H-FABP and brain B-FABP.  相似文献   

5.
In this study, lysophosphatidylcholine (lysoPC) was shown to bind to a fatty acid binding protein isolated from rat liver. To demonstrate the binding, lysoPC was incorporated into multilamellar liposomes and incubated with protein. For comparison, binding of both lysoPC and fatty acid to liver fatty acid binding protein, albumin, and heart fatty acid binding protein were measured. At conditions where palmitic acid bound to liver fatty acid binding protein and albumin at ligand to protein molar ratios of 2:1 and 5:1, respectively, lysoPC binding occurred at molar ratios of 0.4:1 and 1:1. LysoPC did not bind to heart fatty acid binding protein under conditions where fatty acid bound at a molar ratio of 2:1. Competition experiments between lysoPC and fatty acid to liver fatty acid binding protein indicated separate binding sites for each ligand. An equilibrium dialysis cell was used to demonstrate that liver fatty acid binding protein was capable of transporting lysoPC from liposomes to rat liver microsomes, thereby facilitating its metabolism. These studies suggest that liver fatty acid binding protein may be involved in the intracellular metabolism of lysoPC as well as fatty acids, and that functional differences may exist between rat liver and heart fatty acid binding protein.  相似文献   

6.
1. Two low molecular weight (approximately 14,000 Da) proteins exhibiting lipid binding activity were purified from liver cytosol and identified as non-specific lipid binding protein (ns-LTP) and fatty acid binding protein (L-FABP). 2. Ligand binding assays indicated that ns-LTP exhibited greater binding activity for cholesterol and little binding of fatty acids. Conversely, L-FABP had higher relative binding activity for fatty acids but did not bind cholesterol. 3. Amino acid composition and pI data supported the identification of the chicken liver lipid binding proteins as L-FABP and ns-LTP. 4. Polyclonal antisera was prepared against each of the liver lipid binding proteins and monospecificity verified using Western blot analysis.  相似文献   

7.
The ability of purified rat liver and heart fatty acid binding proteins to bind oleoyl-CoA and modulate acyl-CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart fatty acid binding protein was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver fatty acid binding protein has a single binding site acyl-CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl-CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver fatty acid binding protein stimulated acyl-CoA production, whereas that from heart did not stimulate production over control values. 14C-labeled fatty acid-fatty acid binding protein complexes were prepared, incubated with membranes, and acyl-CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl-CoA in the presence of liver fatty acid binding protein but in the presence of heart fatty acid binding protein, only 45% of the fatty acid was converted. Liver but not heart fatty acid binding protein bound the acyl-CoA formed and removed it from the membranes. The amount of product formed was not changed by additional membrane, enzyme cofactors, or incubation time. Additional liver fatty acid binding protein was the only factor found that stimulated product formation. Acyl-CoA hydrolase activity was also shown in the absence of ATP and CoA. These studies suggest that liver fatty acid binding protein can increase the amount of acyl-CoA by binding this ligand, thereby removing it from the membrane and possibly aiding transport within the cell.  相似文献   

8.
Giant sarcolemmal vesicles were isolated from rat heart and hindlimb muscles for a) characterization of long-chain fatty acid transport in the absence of metabolism and b) comparison of fatty acid transport protein expression with fatty acid transport. Giant vesicles contained cytosolic fatty acid binding protein. Palmitate uptake was completely divorced from its metabolism. All palmitate taken up was recovered in the intravesicular cytosol as unesterified FA. Palmitate uptake by heart vesicles exhibited a K m of 9.7 nm, similar to that of muscle (K m = 9.7 nm). Vmax (2.7 pmol/mg protein/s) in heart was 8-fold higher than in muscle (0.34 pmol/mg protein/s). Palmitate uptake was inhibited in heart (55-80%) and muscle (31-50%) by trypsin, phloretin, sulfo-N-succinimidyloleate (SSO), or a polyclonal antiserum against the 40 kDa plasma membrane fatty acid binding protein (FABPpm). Palmitate uptake by heart and by red and white muscle vesicles correlated well with the expression of fatty acid translocase (FAT/CD36) and fatty acid binding protein FABPpm, which may act in concert. The expression of fatty acid transport protein (FATP), was 10-fold lower in heart vesicles than in white muscle vesicles.It is concluded that long-chain fatty acid uptake by heart and muscle vesicles is largely protein-mediated, involving FAT/CD36 and FABPpm. The role of FATP in muscle and heart remains uncertain.  相似文献   

9.
The hemolytic effect of saturated fatty acids increased rapidly, when the number of carbon atoms in the chain exceeded 12. At low fatty acid concentrations (less than 60 microM) the hemolytic effect decreased with increasing number of double bonds in the carbon chain (cis-form fatty acids). A more complex pattern was observed at higher fatty acid concentrations. Trans-unsaturated fatty acids were more hemolytic than cis-analogs. Ceruloplasmin, a serum protein with no fatty acid binding capacity, reduced the hemolytic effect of fatty acids; possibly by interacting with the cell membrane. Reducing compounds (thiols, vitamin C) also protected against fatty acid induced hemolysis.  相似文献   

10.
Fasciola hepatica adult flukes have a native protein complex denoted nFh12 and consisting of fatty acid binding proteins that comprise at least 8 isoforms. It is a potent immunogen because in several animal hosts it induces an early antibody response to F. hepatica infection. It is also a potent cross-protective immunogen because it induces a protective immune response in mice to challenge infection with Schistosoma mansoni cercariae. The gene encoding this protein has been cloned and sequenced. It produces a polypeptide of 132 amino acids with a predicted molecular mass of 14.7 kDa and is denoted rFh15. It also has a significant homology to a 14-kDa S. mansoni fatty acid binding protein (Sm14). In the present study, nFh12 was delipidated with charcoal treatment and then studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Additionally, a lipid analysis of nFh12 was undertaken using gas chromatography-mass spectrometry to demonstrate that the nFh12 protein complex is, in fact, a complex of fatty acid binding proteins. Five long-chain saturated and unsaturated fatty acids were detected. The most abundant were palmitic acid (38%), stearic acid (24%), and oleic acid (13%). These fatty acid molecules do not have covalent bonds attached to the protein molecule. Because both nFh12 and Sm14 protect mice against challenge infection with F. hepatica and S. mansoni, it is possible that they have common protective epitopes in which fatty acids could be involved. Further studies are in progress to determine the chemical nature of these potential common epitopes.  相似文献   

11.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

12.
We have determined the primary structure of human liver fatty acid binding protein from an analysis of a full length cDNA. This 127-residue 14,178-Da protein exhibits a high degree of sequence conservation when compared to its orthologous homologue, rat liver fatty acid binding protein. It appears likely that this polypeptide arose from two intragenic duplication events. Using a variety of computational techniques, we were unable to find any evidence of amphipathic alpha helical domains in this protein nor any sequence similarities to apolipoproteins and serum albumins. A family of paralogous proteins was defined, whose members share a remarkable degree of sequence homology with share a remarkable degree of sequence homology with human liver fatty acid binding protein. These include rat intestinal fatty acid binding protein, the cellular the P2 protein of myelin. It appears that the small cytosolic fatty acid binding proteins have evolved structural features necessary for lipid-protein interaction which are different from those present in some familiar and better studied extracellular sequences.  相似文献   

13.
Hepatic-type fatty-acid-binding protein (hFABP) from the cytosol of bovine liver is a 14.4-kDa neutral protein with a blocked N-terminus and a disulfide system located on the surface of the protein. It binds two molecules of fatty acid in one binding site, apparent dissociation constants of the oleic acid/hFABP complex are 0.24 microM and 2.15 microM. Computer analysis of circular dichroic spectra predicts that hFABP contains about 12% alpha-helix, 45% beta-structure, 15% beta-turn and 27% unordered structure. Ellipticities indicative of secondary structure are not affected by fatty acid binding. Cationic amino acid residues of hFABP (1 His, 15 Lys, 2 Arg) were screened for ionic fatty acid/protein interactions. His was excluded, as 1H-NMR analysis of His-C2 and His-C4 protons indicated that binding of oleic acid shifts the pK of His from 6.9 to 7.1 only in hFABP with the disulfide system in the oxidized state; acylation of His with diethylpyrocarbonate does not affect the binding of the fatty acid. Acetylation of Lys reduces binding marginally, whereas modification of Arg with phenylglyoxal lowers the binding activity by 65%. From 1H-NMR investigations, conformational changes within the protein, due to a sort of disaggregation of hFABP upon fatty acid binding, were derived. Most of the proton resonances sharpen up with ligand binding, and some of the methyl resonances shift positions, possibly because they are directly involved in the fatty acid/protein interaction.  相似文献   

14.
J M Boggs  M A Moscarello 《Biochemistry》1978,17(26):5734-5739
Lipophilin, a hydrophobic protein fraction, purified and delipidated from the proteolipid of human myelin, possesses a layer of boundary lipid surrounding it when incorporated into lipid vesicles. The protein reduces the energy absorbed during the lipid phase transition, indicating that the boundary lipid does not go through the phase transition. The amount of boundary lipid was estimated by plotting the enthalpy of the transition against the protein to lipid mole ratio and extrapolating to deltaH = 0 for a number of synthetic phosphatidylcholines, to determine the ability of fatty acid chains of varying length to interact with the protein. The amount of boundary lipid was found to be similar, 21-25 molecules per molecule of lipophilin, for fatty acid chains of length 14-18 carbons but somewhat less, 16 molecules of lipid per molecule of protein, for a fatty acid chain length of 12 or for one with a trans double bond (18:1tr). No preferential interaction was observed with a lipid containing a particular fatty acid chain length when the protein was incorporated into a mixture of these lipids. These results suggest that the binding of lipids to the boundary layer of other membrane proteins and enzymes may not depend significantly on lipid fatty acid chain length.  相似文献   

15.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

16.
The activities of the enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase are inhibited by palmitoyl-coenzyme A and oleate. The two isoforms of fatty acid binding proteins (PI 6.9 and PI 5.4) enhance the activities of glycerol-3-phosphate dehydrogenase and fatty acid synthase in the absence of palmitoyl-coenzyme A or oleate and also protect them against palmitoyl-coenzyme A or oleate inhibition. Levels of fatty acid binding proteins, the activities of the enzymes fatty acid synthase and glycerol-3-phosphate dehydrogenase increase with gestation showing a peak at term. However, the activity of fatty acid synthase showed the same trend up to the 30th week of gestation and then declined slightly at term. With the advancement of pregnancy when more lipids are required for the developing placenta, fatty acid binding proteins supply more fatty acids and glycerol-3-phosphate for the synthesis of lipids. Thus a correlation exists between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta.  相似文献   

17.
Cellular retinoic acid-binding protein (CRABP) is the putative mediator of the biological effects of retinoic acid in the control of epithelial differentiation and tumorigenesis. Omega-6 fatty acids such as linoleic acid and arachidonic acid, precursors of prostaglandin synthesis, caused inhibition of retinoic acid binding to CRABP. These fatty acids, however, possessed lower affinity than retinoic acid for the binding protein. Omega-3 fatty acids, such as eicosapentaenoic acid and docosohexaenoic acid, did not cause such inhibition in the binding of retinoic acid. Whereas retinoic acid was a potent modulator of differentiation of F9 embryonal carcinoma cells, neither omega-3 nor omega-6 fatty acids showed any significant differentiation potential. Competition by omega-6 fatty acids with retinoic acid for CRABP may neutralize the binding protein-mediated biological functions of retinoic acid, and could thereby enhance tumor production.  相似文献   

18.
PURPOSE OF REVIEW: Fatty acid and triacylglycerol metabolism in adipose tissue may be involved in the generation of risk factors for cardiovascular disease and type 2 diabetes. Pharmaceutical companies are targeting adipocyte metabolism in their search for drugs for treating, or reducing the risk of, these conditions. We review new developments in adipose tissue fatty acid metabolism and how that might relate to cardiovascular disease. RECENT FINDINGS: Fatty acid release from human adipose tissue is oscillatory, with a period of about 12 min. Remarkably, oscillatory fatty acid release is also seen in isolated adipocytes. Further evidence has emerged that not all adipose depots are equal, and that lower-body adipose tissue may exert protective effects against cardiovascular disease. There have been a number of developments in the area of fatty acid handling by adipocytes. Fatty acid binding proteins are clearly important in regulating fatty acid metabolism, with striking protection against atherosclerosis in mice deficient in both the binding proteins expressed in adipocytes. The demonstration that adipocytes lacking hormone-sensitive lipase still display lipolysis has led to the identification of novel lipases that may play crucial roles in adipose tissue fatty acid metabolism. Further evidence has accrued of the interaction between hormone-sensitive lipase and perilipin, the protein that coats the adipocyte lipid droplet. SUMMARY: Recent developments in our understanding of adipose tissue fatty acid metabolism open up the possibility of new pharmaceutical targets. However, interference with adipose tissue fatty acid metabolism is not to be undertaken lightly and needs a clear understanding of the normal role of adipocyte lipolysis.  相似文献   

19.
The differentiation of 3T3-L1 preadipocytes leads to the expression of a new protein, p422, and its mRNA. This protein has 70% and 20-30% amino acid sequence homology to myelin P2 and the fatty acid binding proteins of liver and intestine, respectively. Investigation of the distribution in mouse tissues of p422 protein by immunoblotting and of p422 mRNA by cDNA hybridization indicates that they are expressed only in adipose tissue. Liver and intestinal fatty acid binding protein mRNA's were not detectable in mouse adipose tissue or in 3T3-L1 adipocytes. It is suggested that p422 functions as an adipocyte fatty acid binding protein.  相似文献   

20.
Insights into binding of fatty acids by fatty acid binding proteins   总被引:10,自引:0,他引:10  
Members of the phylogenetically related intracellular lipid binding protein (iLBP) are characterized by a highly conserved tertiary structure, but reveal distinct binding preferences with regard to ligand structure and conformation, when binding is assessed by the Lipidex method (removal of unbound ligand by hydrophobic polymer) or by isothermal titration calorimetry, a true equilibrium method. Subfamily proteins bind retinoids, subfamily II proteins bind bulky ligands, examples are intestinal bile acid binding protein (I-BABP) and liver fatty acid binding protein (L-FABP) which binds 2 ligand molecules, preferably monounsaturated and n-3 fatty acids. Subfamily III intestinal fatty acid binding protein (I-FABP) binds fatty acid in a bent conformation. The fatty acid bound by subfamily IV FABPs has a U-shaped conformation; here heart (H-) FABP preferably binds n-6, brain (B-) FABP n-3 fatty acids. The ADIFAB-method is a fluorescent test for fatty acid in equilibrium with iLBP and reveals some correlation of binding affinity to fatty acid solubility in the aqueous phase; these data are often at variance with those obtained by the other methods. Thus, in this review published binding data are critically discussed, taking into account on the one hand binding increments calculated for fatty acid double bonds on the basis of the solubility hypothesis, on the other hand the interpretation of calorimetric data on the basis of crystallographic and solution structures of iLBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号