首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the fields of axonal and dendritic guidance, there is now a significant accumulation of knowledge of how extracellular signaling molecules activate their cognate growth cone receptors. Relatively little is known about the subsequent activation of intracellular signaling pathways and actin reorganization, and very little is known about how microtubules (MTs) reorganize during growth cone turning. I hypothesize that dynamic MTs are required in order to catalyze the polarized actin assembly necessary for growth cone turning, that MTs and actin filaments promote each other's assembly through positive feedback, that MT stability is enhanced further through the formation of membrane-associated MT attachment sites, and that these MT stabilization events subsequently accelerate axonal/dendritic shaft formation.  相似文献   

2.
The cell biological processes underlying axon growth and guidance are still not well understood. An outstanding question is how a new segment of the axon shaft is formed in the wake of neuronal growth cone advance. For this to occur, the highly dynamic, splayed-out microtubule (MT) arrays characteristic of the growth cone must be consolidated (bundled together) to form the core of the axon shaft. MT-associated proteins stabilize bundled MTs, but how individual MTs are brought together for initial bundling is unknown. Here, we show that laterally moving actin arcs, which are myosin II-driven contractile structures, interact with growing MTs and transport them from the sides of the growth cone into the central domain. Upon Myosin II inhibition, the movement of actin filaments and MTs immediately stopped and MTs unbundled. Thus, Myosin II-dependent compressive force is necessary for normal MT bundling in the growth cone neck.  相似文献   

3.
Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor–induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.  相似文献   

4.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

5.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

6.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

7.
Rho family GTPases have been implicated in neuronal growth cone guidance; however, the underlying cytoskeletal mechanisms are unclear. We have used multimode fluorescent speckle microscopy (FSM) to directly address this problem. We report that actin arcs that form in the transition zone are incorporated into central actin bundles in the C domain. These actin structures are Rho/Rho Kinase (ROCK) effectors. Specifically, LPA mediates growth cone retraction by ROCK-dependent increases in actin arc and central actin bundle contractility and stability. In addition, these treatments had marked effects on MT organization as a consequence of strong MT-actin arc interactions. In contrast, LPA or constitutively active Rho had no effect on P domain retrograde actin flow or filopodium bundle number. This study reveals a novel mechanism for domain-specific spatial control of actin-based motility in the growth cone with implications for understanding chemorepellant growth cone responses and nerve regeneration.  相似文献   

8.
During neuronal pathfinding in vivo, growth cones must reorient their direction of migration in response to extracellular guidance cues. The developing grasshopper limb bud has proved to be a model system in which to examine mechanisms of growth cone guidance and motility in vivo. In this review we examine the contributions of adhesion and multiple guidance cues (semaphorins 1 and 2) in directing a growth cone steering event. Recent observations have suggested that the tibial pioneer growth cones are not directed via mechanisms of differential adhesivity. We present a model of growth cone steering that suggests a combination of adhesive and guidance receptors are important for a correct steering event and that guidance molecules may be important regulators of adhesive interactions with the actin cytoskeleton.  相似文献   

9.
In the developing nervous system, axons are guided to their targets by the growth cone. Lamellipodial and filopodial protrusions from the growth cone underlie motility and guidance. Many molecules that control lamellipodia and filopodia formation, actin organization, and axon guidance have been identified, but it remains unclear how these molecules act together to control these events. Experiments are described here that indicate that, in Caenorhabditis elegans, two WH2-domain-containing activators of the Arp2/3 complex, WVE-1/WAVE and WSP-1/WASP, act redundantly in axon guidance and that GEX-2/Sra-1 and GEX-3/Kette, molecules that control WAVE activity, might act in both pathways. WAVE activity is controlled by Rac GTPases, and data are presented here that suggest WVE-1/WAVE and CED-10/Rac act in parallel to a pathway containing WSP-1/WASP and MIG-2/RhoG. Furthermore, results here show that the CED-10/WVE-1 and MIG-2/WSP-1 pathways act in parallel to two other molecules known to control lamellipodia and filopodia and actin organization, UNC-115/abLIM and UNC-34/Enabled. These results indicate that at least three actin-modulating pathways act in parallel to control actin dynamics and lamellipodia and filopodia formation during axon guidance (WASP-WAVE, UNC-115/abLIM, and UNC-34/Enabled).  相似文献   

10.
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least three types of guidance cues: a limb axis cue, intermediate target cells, and a circumferential band of epithelial cells. With time-lapse imaging of intracellularly injected rhodamine-phalloidin and rhodamine-actin, we monitored the distribution of actin during growth cone responses to these cues. In distal limb regions, accumulation of actin in filopodia and growth cone branches accompanies continued growth, while reduction of actin accompanies withdrawal. Where growth cones are reorienting to intermediate target cells, or along the circumferential epithelial band, actin selectively accumulates in the proximal regions of those filopodia that have contacted target cells or are extending along the band. Actin accumulations can be retrogradely transported along filopodia, and can extend into the central region of the growth cone. These results suggest that regulation and translocation of actin may be a significant element in growth cone steering.  相似文献   

11.
12.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

13.
Growth cone responses to guidance cues provide the basis for neuronal pathfinding. Although many cues have been identified, less is known about how signals are translated into the cytoskeletal rearrangements that steer directional changes during pathfinding. Here we show that the response of dorsal root ganglion (DRG) neurons to Semaphorin 3A gradients can be divided into two steps: growth cone collapse and retraction. Collapse is inhibited by overexpression of myosin IIA or growth on high substrate-bound laminin-1. Inhibition of collapse also prevents retractions; however collapse can occur without retraction. Inhibition of myosin II activity with blebbistatin or by using neurons from myosin IIB knockouts inhibits retraction. Collapse is associated with movement of myosin IIA from the growth cone to the neurite. Myosin IIB redistributes from a broad distribution to the rear of the growth cone and neck of the connecting neurite. High substrate-bound laminin-1 prevents or reverses these changes. This suggests a model for the Sema 3A response that involves loss of growth cone myosin IIA to facilitate actin meshwork instability and collapse, followed by myosin IIB concentration at the rear of the cone and neck region where it associates with actin bundles to drive retraction.  相似文献   

14.
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.  相似文献   

15.
《Developmental neurobiology》2017,77(9):1038-1056
Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that can interact with multiple signaling molecules concurrently through its seven WD40 repeats. We recently found that RACK1 is localized to mammalian growth cones, prompting an investigation into its role during neural development. Here, we show for the first time that RACK1 localizes to point contacts within mouse cortical growth cones. Point contacts are adhesion sites that link the actin network within growth cones to the extracellular matrix, and are necessary for appropriate axon guidance. Our experiments show that RACK1 is necessary for point contact formation. Brain‐derived neurotrophic factor (BDNF) stimulates an increase in point contact density, which was eliminated by RACK1 shRNA or overexpression of a nonphosphorylatable mutant form of RACK1. We also found that axonal growth requires both RACK1 expression and phosphorylation. We have previously shown that the local translation of β‐actin mRNA within growth cones is necessary for appropriate axon guidance and is dependent on RACK1. Thus, we examined the location of members of the local translation complex relative to point contacts. Indeed, both β‐actin mRNA and RACK1 colocalize with point contacts, and this colocalization increases following BDNF stimulation. This implies the novel finding that local translation is regulated at point contacts. Taken together, these data suggest that point contacts are a targeted site of local translation within growth cones, and RACK1 is a critical member of the point contact complex and necessary for appropriate neural development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1038–1056, 2017  相似文献   

16.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

17.
Repulsive guidance cues can either collapse the whole growth cone to arrest neurite outgrowth or cause asymmetric collapse leading to growth cone turning. How signals from repulsive cues are translated by growth cones into this morphological change through rearranging the cytoskeleton is unclear. We examined three factors that are able to induce the collapse of extending Helisoma growth cones in conditioned medium, including serotonin, myosin light chain kinase inhibitor, and phorbol ester. To study the cytoskeletal events contributing to collapse, we cultured Helisoma growth cones on polylysine in which lamellipodial collapse was prevented by substrate adhesion. We found that all three factors that induced collapse of extending growth cones also caused actin bundle loss in polylysine-attached growth cones without loss of actin meshwork. In addition, actin bundle loss correlated with specific filamentous actin redistribution away from the leading edge that is characteristic of repulsive factors. Finally, we provide direct evidence using time-lapse studies of extending growth cones that actin bundle loss paralleled collapse. Taken together, these results suggest that actin bundles could be a common cytoskeletal target of various collapsing factors, which may use different signaling pathways that converge to induce growth cone collapse.  相似文献   

18.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

19.
To test how cell-cell contacts regulate microtubule (MT) and actin cytoskeletal dynamics, we examined dynamics in cells that were contacted on all sides with neighboring cells in an epithelial cell sheet that was undergoing migration as a wound-healing response. Dynamics were recorded using time-lapse digital fluorescence microscopy of microinjected, labeled tubulin and actin. In fully contacted cells, most MT plus ends were quiescent; exhibiting only brief excursions of growth and shortening and spending 87.4% of their time in pause. This contrasts MTs in the lamella of migrating cells at the noncontacted leading edge of the sheet in which MTs exhibit dynamic instability. In the contacted rear and side edges of these migrating cells, a majority of MTs were also quiescent, indicating that cell-cell contacts may locally regulate MT dynamics. Using photoactivation of fluorescence techniques to mark MTs, we found that MTs in fully contacted cells did not undergo retrograde flow toward the cell center, such as occurs at the leading edge of motile cells. Time-lapse fluorescent speckle microscopy of fluorescently labeled actin in fully contacted cells revealed that actin did not flow rearward as occurs in the leading edge lamella of migrating cells. To determine if MTs were required for the maintenance of cell-cell contacts, cells were treated with nocodazole to inhibit MTs. After 1-2 h in either 10 microM or 100 nM nocodazole, breakage of cell-cell contacts occurred, indicating that MT growth is required for maintenance of cell-cell contacts. Analysis of fixed cells indicated that during nocodazole treatment, actin became reduced in adherens junctions, and junction proteins alpha- and beta-catenin were lost from adherens junctions as cell-cell contacts were broken. These results indicate that a MT plus end capping protein is regulated by cell-cell contact, and in turn, that MT growth regulates the maintenance of adherens junctions contacts in epithelia.  相似文献   

20.
It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号