首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective and sensitive analytical method for the simultaneous measurement of dolasetron (I) and its major metabolite, MDL 74,156 (II), in human plasma and urine samples has been developed using a structural analogue, MDL 101,858, as internal standard (I.S.). The compounds were extracted from plasma and urine using solvent extraction after the addition of the I.S. Chromatographic separation was carried out on a reversed-phase HPLC column and detection and quantification was by fluorescence with excitation and emission wavelengths of 285 and 345 nm, respectively. Linear responses were obtained over concentration ranges of 5 to 1000 pmol/ml for plasma samples and 20 to 1000 pmol/ml for urine samples with correlation coefficients for the calibration curves exceeding 0.999 in all cases. Intra-day and inter-day reproducibility yielded limits of quantification of 10 pmol/ml for I and 5 pmol/ml for II in plasma and 50 pmol/ml for I and II in urine. The method has been applied to the simultaneous analysis of both compounds in plasma and urine samples coming from clinical pharmacokinetic studies.  相似文献   

2.
A sensitive reversed-phase high-performance liquid chromatographic fluorescence method is described for the simultaneous determination of topotecan (I) and the hydrolysed lactone ring-opened product hydroxy acid (II) in plasma and for the determination of I in urine. To 250 μl of plasma, a 750-μl volume of cold methanol was added to stabilize the pH-dependent conversion of I into II. In plasma, the lower limit of quantitation (LLQ) for both compounds was 0.10 ng/ml. The between-day variation for I at the LLQ was 7.1% and for II was 5.5%. Prior to injection, urine samples were acidified with orthophosphoric acid and diluted with phosphate-buffered saline (PBS). In urine, the calibration curve for I was linear in the range of 10 to 250 ng/ml and the LLQ was 10 ng/ml. The assay was developed to enable pharmacological analysis of I, in on-going phase I and II studies, in patients with solid tumors.  相似文献   

3.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

4.
A sensitive and highly automated high-performance liquid chromatography (HPLC) column-switching method has been developed for the simultaneous determination of the active metabolite III and its prodrug II, both derivatives of the oral platelet inhibitor Ro 48-3657 (I), in plasma and urine of man and dog. Plasma samples were deproteinated with perchloric acid (0.5 M), while urine samples could be processed directly after dilution with phosphate buffer. The prepared samples were injected onto a pre-column of a HPLC column switching system. Polar plasma or urine components were removed by flushing the precolumn with phosphate buffer (0.1 M, pH 3.5). Retained compounds (including II and III) were backflushed onto the analytical column, separated by gradient elution and detected by means of UV detection at 240 nm. The limit of quantification for both compounds was 1 ng/ml (500 μl of plasma) and 25 ng/ml (50 μl of urine) for plasma and urine, respectively. The practicability of the new method was demonstrated by the analysis of about 6000 plasma and 1300 urine samples from various toxicokinetic studies in dogs and phase 1 studies in man.  相似文献   

5.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

6.
A simple and sensitive method for quantitation of HSR-609 (I) in human plasma and urine was developed using HPLC with the fluorescence labelling reagent 4-(N,N-dimethylaminosulfonyl)-7-N-piperazino-2,1,3-benzoxadiazole (DBD-PZ). Compound I was extracted from human plasma and urine, and derivatized by reaction with DBD-PZ in the presence of Mukaiyama reagent A, an equimolar solution of 2,2′-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) in acetonitrile. The reaction mixture was cleaned up by liquid-liquid extraction following the derivatization. The conjugate was analyzed by ion-pair HPLC with fluorometric detection. The quantitation limits for I were 0.5 ng/ml in plasma and 5 ng/ml in urine. Using this method, plasma concentration and urinary excretion of I were studied after oral administration of I to human volunteers.  相似文献   

7.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

8.
A high-performance liquid chromatographic method was developed for the determination of a new non-narcotic analgesic, DA-5018 (I), in rat plasma, urine and bile samples, using propranolol for plasma samples and protriptyline for urine and bile samples as internal standards. The method involved extraction followed by injection of 100 μl of the aqueous layer onto a C18 reversed-phase column. The mobile phases were 5 mM methanesulfonic acid with 10 mM NaH2PO4 (pH 2.5)-acetonitrile, 70:30 (v/v) for plasma samples and 75:25 (v/v) for urine and bile samples. The flow-rates were 1.0 ml/min for plasma samples and 1.2 ml/min for urine and bile samples. The column effluent was monitored by a fluorescence detector with an excitation wavelength of 270 nm and an emission wavelength of 330 nm. The retention time for I was 4.8 min in plasma samples and 10.0 min in urine and bile samples. The detection limits for I in rat plasma, urine and bile were 20, 100 and 100 ng/ml, respectively. There was no interference from endogenous substances.  相似文献   

9.
Column-switching HPLC methods have been developed and validated for the determination of a new antihypertensive prodrug, TCV-116 (I), and its metabolites, CV-11974 (II) and CV-15959 (III), in human serum and urine. Initial sample cleanup was achieved by extracting the analytes into an organic solvent. After chromatographing on an ODS column with a mobile phase consisting of acetonitrile and an acidic phosphate buffer, the zone of the analyte's retention was heart-cut onto a second ODS column with a mobile phase of acetonitrile and a phosphate buffer at a higher pH. Complete separation of the analytes and the endogenous peaks was accomplished by the two-dimensional chromatography. Good precision and linearity of the calibration standards, as well as the inter-day and intra-day precision and accuracy of quality control samples, were achieved. The limit of quantitation (LOQ), using 0.5 ml of serum, was 2 ng/ml for I, 0.8 ng/ml for II, and 0.5 ng/ml for III. The LOQ for urine sample was 10 ng/ml for II and III. Stability of the analytes during storage, extraction, and chromatography processes was established. The results illustrate the versatile application of column switching to method development of multiple analytes in various biological matrices. The methods have been successfully used for the analyses of I and its metabolites in thousands of clinical samples to provide pharmacokinetics data.  相似文献   

10.
Karenitecin is a novel, highly lipophilic camptothecin derivative with potent anticancer potential. We have developed a sensitive high-performance liquid chromatographic method for the determination of karenitecin concentration in human plasma and urine. Karenitecin was isolated from human plasma and urine using solid-phase extraction. Separation was achieved by gradient elution, using a water and acetonitrile mobile phase, on an ODS analytical column. Karenitecin was detected using fluorescence detection at excitation and emission wavelengths of 370 and 490 nm, respectively. Retention time for karenitecin was 16.2±0.5 min and 8.0±0.2 min for camptothecin, the internal standard. The karenitecin peak was baseline resolved, with the nearest peak at 3.1 min distance. Using normal volunteer plasma and urine from multiple individuals, as well as samples from the 50 patients analyzed to date, no interfering peaks were detected. Inter- and intra-day coefficients of variance were <4.4 and 7.1% for plasma and <4.9 and 11.6% for urine. Assay precision, based on an extracted karenitecin standard plasma sample of 2.5 ng/ml, was +4.46% with a mean accuracy of 92.4%. For extracted karenitecin standard urine samples of 2.5 ng/ml assay precision was +2.35% with a mean accuracy of 99.5%. The mean recovery of karenitecin, at plasma concentrations of 1.0 and 50 ng/ml, was 81.9 and 87.8% respectively. In urine, at concentrations of 1.5 and 50 ng/ml, the mean recoveries were 90.3 and 78.4% respectively. The lower limit of detection (LLD) for karenitecin was 0.5 ng/ml in plasma and 1.0 ng/ml in urine. The lower limit of quantification (LLQ) for karenitecin was 1 ng/ml and 1.5 ng/ml for plasma and urine, respectively. Stability studies indicate that when frozen at −70°C, karenitecin is stable in human plasma for up to 3 months and in human urine for up to 1 month. This method is useful for the quantification of karenitecin in plasma and urine samples for clinical pharmacology studies in patients receiving this agent in clinical trials.  相似文献   

11.
A sensitive high-performance liquid chromatographic (HPLC) method with ultraviolet absorption detection (292 nm) was developed and validated for the determination of the new phosphodiesterase V inhibitor, DA-8159 (DA), in human plasma and urine. A single step liquid-liquid extraction procedure using ethyl ether was performed to recover DA and the internal standard (sildenafil citrate) from 1.0 ml of biological matrices combined with 200 microl of 0.1M sodium carbonate buffer. A Capcell Pak C18 UG120 column (150 mm x 4.6 mm I.D., 5 microm) was used as a stationary phase and the mobile phase consisted of 30% acetonitrile and 70% 20mM potassium phosphate buffer (pH 4.5) at a flow rate of 1.0 ml/min. The lower limit for quantification was 5 ng/ml for plasma and 10 ng/ml for urine samples. Within- and between-run accuracy and precision were < or =15 and < or =10%, respectively, in both plasma and urine samples. The recovery of DA from human plasma and urine was greater than 70%. Separate stability studies showed that DA is stable under the conditions of analysis. This validated assay was used for the pharmacokinetic analysis of DA during a phase I, rising dose study.  相似文献   

12.
N-(n-Propyl)-N-(4-pyridinyl)-1H-indol-1-amine hydrochloride (HP 749, I), a non-receptor-dependent cholinomimetic agent with noradrenergic activity, is a potential agent for the treatment of Alzheimer's disease. Pharmacokinetic studies in animals and humans showed that I was well absorbed and metabolized primarily to the N-despropyl metabolite (P7480, II) after oral administration. To facilitate the kinetic studies, a sensitive and selective high-performance chromatographic assay was developed. I and II are extracted from plasma by a mixture of cyclohexane—ethyl acetate and chromatographed on an isocratic reversed-phase high-performance liquid chromatographic system employing an analytical phenyl column with acetonitrile—ammonium formate as mobile phase. The concentrations of these two compounds, quantitated by internal standardization, are monitored by ultraviolet detection. The method is linear in the plasma assay over a concentration range of 0.5–500 ng/ml for both compounds with a quantitation limit of 0.5 ng/ml. The precision and accuracy of the calibration curves and/or method are less than 10%. The recovery of I and II from plasma is 63–74 and 63–68%, respectively, over a concentration range of 0.5–500 ng/ml.  相似文献   

13.
Camptothecins are indole alkaloids isolated from a Chinese tree, Camptotheca acuminata, and have a wide spectrum of anticancer activity in vitro and in vivo. A novel camptothecin congener 10-hydroxycamptothecin (HCPT) has been shown to be more active and less toxic than camptothecin, and the lactone HCPT is believed to be responsible for its anticancer activity. In the present study, a reversed-phase high-performance liquid chromatography (HPLC) with fluorescence detection was developed and validated for the simulataneous analysis of HCPT for lactone form (I) and carboxylate form (II) in plasma, urine and feces and tissues. Biological samples were prepared by a liquid-liquid extraction method using ice-cold methanol-acetonitrile (1:1, v/v). This method was shown to be reproducible and reliable, with intra- and inter-day variations being less than 7%, and accuracy being 94.3%–102.7%. The limits of determination were 2 ng/ml, 2 ng/ml, 2 ng/g, and 10 ng/ml for HCPT forms I and II in rat plasma, urine, feces, and tissues, respectively. The assay was liner over the range 2–2000 ng/ml (r=0.999, P<0.001) with recoveries of greater than 90% for plasma and urine and approximately 70–80% for feces and tissues homogenates through the extraction procedure. This analytic procedure has been successfully applied to a pharmacokinetic study of HCPT in experimental animals and should be useful in the future human studies.  相似文献   

14.
A sensitive gradient high-performance liquid chromatographic (HPLC) method for the simultaneous quantitation of a dopamine autoreceptor agonist CI-1007 (I) and its metabolite PD 147693 (II) is described. Monkey plasma samples were purified by liquid-liquid extraction using hexane. Liquid chromatographic separation was achieved on two C18 analytical columns (installed in series) using gradient elution. Column effluent was monitored using a fluorescence detector programmed to change wavelengths at specified times. Minimum quantitation limits of I and II were 3.0 and 5.0 ng/ml, respectively, for a plasma sample volume of 0.100 ml. Linearity was demonstrated up to 300 ng/ml. The assay has been applied to the analysis of I and II in plasma from monkeys following intravenous and oral doses of I.  相似文献   

15.
We describe a liquid chromatography-electrospray ionisation tandem mass spectrometry method for the qualitative and quantitative determination of the secoiridoid oleuropein and its bioactive metabolite hydroxytyrosol in rat plasma and urine. Samples were prepared by liquid-liquid extraction using ethyl acetate with a recovery for both compounds of about 100% in plasma and about 60% in urine. The chromatographic separation was performed with a RP-ODS column using a water-acetonitrile linear gradient. The calibration curve was linear for both biophenols over the range 2.5-1000 ng/ml (LOD 1.25 ng/ml) for plasma and 5-1000 ng/ml (LOD 2.5 ng/ml) for urine. Plasma concentrations of oleuropein and hydroxytyrosol were measured after oral administration of a single dose (100 mg/kg) of oleuropein. Analysis of treated rat plasma showed the presence of unmodified oleuropein, reaching a peak value of 200 ng/ml within 2 h, with a small amount of hydroxytyrosol, whereas in urine, both compounds were mainly found as glucuronides.  相似文献   

16.
A high performance liquid chromatography (HPLC) method for the estimation of pravastatin in human plasma and urine samples has been developed. The preparation of the samples was performed by automated solid phase extraction using clonazepam as internal standard. The compounds were separated by isocratic reversed-phase HPLC (C(18)) and detected at 239 nm. The method was linear up to concentrations of 200 ng/ml in plasma and 2000 ng/ml in urine. The intra-assay variability for pravastatin in plasma ranged from 0.9% to 3.5% and from 2.5% to 5.3% in urine. The inter-assay variability ranged from 9.1% to 10.2% in plasma and from 3.9% to 7.5% in urine. The validated limits of quantification were 1.9 ng/ml for plasma and 125 ng/ml for urine estimation. These method characteristics allowed the determination of the pharmacokinetic parameters of pravastatin after administration of therapeutic doses.  相似文献   

17.
A rapid, reliable and specific reversed-phase high-performance liquid chromatographic procedure is described for the determination of diphenylpyraline hydrochloride at nanogram concentrations in plasma and urine. After extraction of the drug with n-pentane-2-propanol (50:1) from alkalinized samples, the organic extract was evaporated to dryness, reconstituted with methanol and chromatographed using a 5-μm Asahipak ODP-50 C18 column with UV detection at 254 nm. The elution time for diphenylpyraline was 7.9 min. The overall recovery of diphenylpyraline from spiked plasma and urine samples at concentrations ranging from 53 to 740 ng/ml were 94.65% and 92.29%, respectively. Linearity and precision data for plasma and urine standards after extraction were acceptable. The limit of detection was 15 ng/ml for both plasma and urine samples at 0.002 AUFS.  相似文献   

18.
BAPTA free acid was identified as the main metabolic product of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(actoxymethyl ester) (BAPTA-AM), a neuroprotective agent in cerebral ischemia, in rats. In this paper, liquid chromatography-ultraviolet (LC-UV) and mass spectrometry/mass spectrometry (LC-MS/MS) methods were employed for the determination of BAPTA free acid in rat urine and feces and rat plasma, respectively. By liquid-liquid extraction and LC-UV analysis, a limit of quantitation of 1000 ng/ml using 0.2 ml rat urine for extraction and 250 ng/ml using 1 ml rat fecal homogenate supernatant for extraction could be reached. The assay was linear in the range of 1000-50,000 ng/ml for rat urine and 250-10,000 ng/ml for rat fecal homogenate supernatant. Because the sensitivity of the LC-UV method was apparently insufficient for evaluating the pharmacokinetic profile of BAPTA in rat plasma, a LC-MS/MS method was subsequently developed for the analysis of BAPTA free acid. By protein precipitation and LC-MS/MS analysis, the limit of quantitation was 5 ng/ml using 0.1 ml rat plasma and the linear range was 5.0-500 ng/ml. Both methods were validated and can be used to support a thorough preclinical pharmacokinetic evaluation of BAPTA-AM liposome injection.  相似文献   

19.
Aplidine (dehydrodidemnin B) is a new marine-derived depsipeptide with a powerful cytotoxic activity, which is under early clinical investigation in Europe and in the US. In order to investigate the pharmacokinetic properties of this novel drug, an HPLC–tandem mass spectrometry method was developed for the determination of aplidine in biological samples. Didemnin B, a hydroxy analogue, was used as internal standard. After protein precipitation with acetonitrile and extraction with chloroform, aplidine was chromatographed with a RP octadecylsilica column using a water–acetonitrile linear gradient in the presence of formic acid at the flow-rate of 500 μl/min. The method was linear over a 5–100 ng/ml range (LOD=0.5 ng/ml) in plasma and over a 1.25–125 ng/ml range (LOD=0.2 ng/ml) in urine with precision and accuracy below 14.0%. The intra- and inter-day precision and accuracy were below 12.5%. The extraction procedure recoveries for aplidine and didemnin B were 69% and 68%, respectively in plasma and 91% and 87%, respectively in urine. Differences in linearity, LOQ, LOD and recoveries between plasma and urine samples seem to be matrix-dependent. The applicability of the method was tested by measuring aplidine in rat plasma and urine after intravenous treatment.  相似文献   

20.
We report a method for the simultaneous determination of methamphetamine, amphetamine and their hydroxylated metabolites in plasma and urine samples using a GC-NPD system. The analytical procedures are: (1) adjust the sample to pH 11.5 with bicarbonate buffer, saturate with NaCl and extract with acetate; (2) back-extract the amines in the ethyl acetate fraction with 0.1 M HCl; (3) adjust the pH of the acid fraction to 11.5 and follow by extraction in ethyl acetate; (4) reduce the volume of ethyl acetate under nitrogen and derivatize the concentrate with trifluoroacetic anhydride or heptaflourobutyric anhydride before the GC analysis. The derivatives were separated on a GC-NPD system equipped with a HP-5 column of 25 m×0.32 m I.D. and a 0.52 μm film of 5% phenylmethylsilicone. The detection limit (taking a signal-to-noise ratio of 2) of heptafluorobutyl derivatives of methamphetamine and its metabolites in plasma and the trifluoroacetyl derivatives in urine was 1 ng/ml (22 pg on column). The limit of quantitation of the heptafluorobutyl derivatives in the plasma was 1 ng/ml (22 pg on column), and that of the trifluoroacetyl derivatives in urine was 20 ng/ml (73 pg on column). The between-day variation was from 0.9 to 17.4% and within-day variation from 0.9 to 8.3%. This method was used successfully in the quantitative determination of methamphetamine and its p-hydroxylated metabolites in the plasma and urine of human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号