首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

2.
3.
The presence of five P2X-like genes (p2xA–E) in Dictyostelium suggests that nucleotides other than cAMP may act as extracellular signalling molecules in this model eukaryote. However, p2xA was found to have an exclusively intracellular localisation making it unclear whether Dictyostelium utilise P2 receptors in a manner analogous to vertebrates. Using an apoaequorin expressing strain we show here that Dictyostelium do possess cell surface P2 receptors that facilitate Ca2+ influx in response to extracellular ATP and ADP (EC50 = 7.5 μM and 6.1 μM, respectively). Indicative of P2X receptor activation, responses were rapid reaching peak within 2.91 ± 0.04 s, required extracellular Ca2+, were inhibited by Gd3+, modified by extracellular pH and were not affected by deletion of either the single or iplA genes. Responses also remained unaffected by disruption of p2xA or p2xE showing that these genes are not involved. Cu2+ and Zn2+ inhibited purine-evoked Ca2+ influx with IC50 values of 0.9 and 6.3 μM, respectively. 300 μM Zn2+ completely abolished the initial large rapid rise in intracellular Ca2+ revealing the presence of an additional smaller, slower P2Y-like response. The existence of P2 receptors in Dictyostelium makes this organism a valuable model to explore fundamental aspects of purinergic signalling.  相似文献   

4.
In vertebrate cells calcium-induced calcium release (CICR) is thought to be responsible for rapid cytosolic Ca(2+) elevations despite the occurrence of strong Ca(2+) buffering within the cytosol. In Dictyostelium, a CICR mechanism has not been reported. While analyzing Ca(2+) regulation in a vesicular fraction of Dictyostelium rich in Ca(2+)-flux activity, containing contractile vacuoles (CV) as the main component of acidic Ca(2+) stores and ER, we detected a rapid Ca(2+) change upon addition of Ca(2+) (CIC). CIC was three times larger in active stores accumulating Ca(2+) than before Ca(2+) uptake and in inactivated stores. Ca(2+) release was demonstrated with the calmodulin antagonist W7 that inhibits the V-type H(+)ATPase activity and Ca(2+) uptake of acidic Ca(2+) stores. W7 caused a rapid and large increase of extravesicular Ca(2+) ([Ca(2+)](e)), much faster and larger than thapsigargin (Tg), a Ca(2+)-uptake inhibitor of the ER. W7 treatment blocked CIC indicating that a large part of CIC is due to Ca(2+) release. The height of CIC depended on the filling state of the Ca(2+) stores. CIC was virtually unchanged in the iplA(-) strain that lacks a putative IP(3) or ryanodine receptor thought to be located at the endoplasmic reticulum. By contrast, CIC was reduced in two mutants, HGR8 and lvsA(-), that are impaired in acidic Ca(2+)-store function. Purified Ca(2+) stores enriched in CV still displayed CIC, indicating that CV are a source of Ca(2+)-induced Ca(2+) release. CIC-defective mutants were altered in their oscillatory properties. The irregularity of the HGR8 oscillation suggests that the principal oscillator is affected in this mutant.  相似文献   

5.
Administration of a carbamate pesticide carbaryl (1-Naphthyl-N-methyl carbamate) at a concentration of 60 and 100 ppm greatly inhibits the endocytotic functions during growth of the cellular slime mold D. discoideum. The ingestion of fluorescien isothiocynate (FITC) labeled E. coli is reduced between 30 and 40% in the treated cells as compared to controls. Similarly, the uptake of FITC-labeled dextran, which has been used as fluid-phase marker for pinocytosis also show 40-50% inhibition in the treated cells. 3H-leucine uptake and incorporation are also inhibited in the treated cells. SDS-PAGE analysis of cytoskeletal proteins shows a higher actin association with the membrane of treated cells. The results demonstrate the detrimental effects of Carbamate on the soil microbe even at a very low concentration and the efficacy of the slime mold cells as a biosensor for the carbamate-induced cytotoxicity.  相似文献   

6.
Coated vesicles in Dictyostelium discoideum   总被引:3,自引:0,他引:3  
  相似文献   

7.
Ca2+ responses to two chemoattractants, folate and cyclic AMP (cAMP), were assayed in Dictyostelium D. discoideum mutants deficient in one or both of two abundant Ca2+-binding proteins of the endoplasmic reticulum (ER), calreticulin and calnexin. Mutants deficient in either or both proteins exhibited enhanced cytosolic Ca2+ responses to both attractants. Not only were the mutant responses greater in amplitude, but they also exhibited earlier onsets, faster rise rates, earlier peaks, and faster fall rates. Correlations among these kinetic parameters and the response amplitudes suggested that key events in the Ca2+ response are autoregulated by the magnitude of the response itself, i.e., by cytosolic Ca2+ levels. This autoregulation was sufficient to explain the altered kinetics of the mutant responses: larger responses are faster in both mutant and wild-type cells in response to both folate (vegetative cells) and cAMP (differentiated cells). Searches of the predicted D. discoideum proteome revealed three putative Ca2+ pumps and four putative Ca2+ channels. All but one contained sequence motifs for Ca2+- or calmodulin-binding sites, consistent with Ca2+ signals being autoregulatory. Although cytosolic Ca2+ responses in the calnexin and calreticulin mutants are enhanced, the influx of Ca2+ from the extracellular medium into the mutant cells was smaller. Compared to wild-type cells, Ca2+ release from the ER in the mutants thus contributes more to the total cytosolic Ca2+ response while influx from the extracellular medium contributes less. These results provide the first molecular genetic evidence that release of Ca2+ from the ER contributes to cytosolic Ca2+ responses in D. discoideum.  相似文献   

8.
In Dictyostelium discoideum, the initial differentiation of cells is regulated by the phase of the cell cycle at starvation. Cells in S and early G2 (or with a low DNA content) have relatively high levels of cellular Ca2+ and display a prestalk tendency after starvation, whereas cells in mid to late G2 (or with a high DNA content) have relatively low levels of Ca2+ and display a prespore tendency. We found that there is a correlation between cytosolic Ca2+ and cell cycle phase, with high Ca2+ levels being restricted to cells in the S and early G2 phases. As expected on the basis of this correlation, cell cycle inhibitors influence the proportions of amoebae containing high or low Ca2+. However, it has been reported that in the rtoA mutant, which upon differentiation gives rise to many more stalk cells than spores (compared to the wild type), initial cell-type choice is independent of cell cycle phase at starvation. In contrast to the wild type, a disproportionately large fraction of rtoA amoebae fall into the high Ca2+ class, possibly due to an altered ability of this mutant to transport Ca2+.  相似文献   

9.
Effect of extracellular Ca2+ on the morphogenesis of the cellular slime mold Dictyostelium discoideum was examined on agar plate. The concentration of Ca2+ in agar plate was controlled by keeping the concentration of a chelating reagent EGTA constant and varying the concentration of total calcium. From experiments in which EGTA concentration was kept at 2.0 × 10?3 M, it was found that by decreasing Ca2+ concentration the morphogenesis was modified so that development of the aggregating amebae into fruiting bodies was accelerated and the period of migrating slugs was shortened. Below 1.0 × 10?3 M of Ca2+ concentration, the total number of aggregates initially increased with decreasing Ca2+ concentration, reached a maximum at about 3.0 × 10?7 M of Ca2+ concentration and hereafter decreased with decreasing Ca2+ concentration. The number of mature fruiting bodies obtained at 36 h period after starvation depends on Ca2+ concentration and the total number of aggregates. The cell aggregation initiated at the same time period after starvation even at an extreme case of 1.0 × 10?8 M of Ca2+ concentration as under enough Ca2+ supply, while the formation of mature fruiting body was seriously inhibited. These observation suggested that the cAMP-mediated cell aggregation in D. discoideum is a Ca2+-independent phenomena, although extracellular Ca2+ is necessary for the normal development of the aggregated amebae.  相似文献   

10.
Amebae of Dictyostelium exhibit a transient uptake of extracellular Ca2+ approximately 5 s after activation of surface folate or cAMP receptors (Bumann, J., B. Wurster, and D. Malchow. 1984. J. Cell Biol. 98:173-178). To further characterize these Ca2+ entry systems, we analyzed 45Ca2+ uptake by resting and activated amebae. Like the surface chemoreceptors, folate- and cAMP-induced Ca2+ uptake responses were developmentally regulated; the former response was evident in vegetative but not aggregation-competent cells, whereas the latter response displayed the opposite pattern of expression. In contrast, other characteristics of these Ca2(+)-uptake pathways were remarkably similar. Both systems (a) exhibited comparable kinetic properties, (b) displayed a high specificity for Ca2+, and (c) were inhibited effectively by Ruthenium Red, sodium azide, and carbonylcyanide m-chlorophenyl-hydrazone. These results, together with the finding that vegetative cells transformed with a plasmid expressing the surface cAMP receptor exhibit a cAMP-induced Ca2+ uptake, suggest that different chemoreceptors activate a single Ca2+ entry pathway. Additional pharmacological and ion competition studies indicated that receptor-mediated Ca2+ entry probably does not involve a Na+/Ca2+ exchanger or voltage-activated channels. Chemoattractant binding appears to generate intracellular signals that induce activation and adaption of the Ca2(+)-uptake response. Analysis of putative signaling mutants suggests that Ca2+ entry is not regulated by the guanine nucleotide-binding (G) protein subunits G alpha 1 or G alpha 2, or by G protein-mediated changes in intracellular cAMP or guanosine 3,'5'-cyclic monophosphate (cGMP).  相似文献   

11.
Penta-EF-hand (PEF) proteins such as ALG-2 (apoptosis-linked gene 2 product) and the calpain small subunit are a newly classified family of Ca(2+)-binding proteins that possess five EF-hand-like motifs. We identified two mutually homologous PEF proteins, designated DdPEF-1 and DdPEF-2 (64% amino acid residue identities), in the cellular slime mold Dictyostelium discoideum. Both PEF proteins showed a higher similarity to mammalian ALG-2 and peflin (Group I PEF proteins) than to calpain and sorcin subfamily (Group II PEF proteins) in the first EF-hand (EF-1) regions. Northern blot analyses revealed that DdPEF-1 and DdPEF-2 were constitutively expressed throughout development of Dictyostelium, but their levels of expression were developmentally regulated. In situ hybridization analyses demonstrated that DdPEF-1 was expressed in both the anterior prestalk and the posterior prespore regions of the tipped aggregate, slugs and early culminants. On the other hand, DdPEF-2 was dominantly expressed in the anterior tip region of these multicellular structures. Both PEF proteins were detected as 22-23-kDa proteins in soluble fractions in the presence of EGTA but in particulate fractions in the presence of Ca(2+) by Western blotting using specific monoclonal antibodies. Together with the finding of PEF-like sequences in DNA databases of plants, fungi and protists, our results strongly suggest that Group I PEF proteins are ubiquitously present in all eukaryotes and play important roles in basic cellular functions.  相似文献   

12.
The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 M and Vmax=12.5±2.4 mol Pi.mg–1h–1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >ZnCo>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 M) and N-ethylmaleinimide (100 M). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.Abbreviations used BSA bovine serum albumin - HA Ca-ATPase high-affinity Ca2+-ATPase - K-pNPPase onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase - NEM N-ethylmaleinimide - SIM 250 mM sucrose, 10 mM imidazole-HCl pH 7.4 - TRIS tris (hydroxymethyl) aminomethane  相似文献   

13.
In mated cultures (NC4 X V12) of Dictyostelium discoideum containing 1.0 mM CaCl2, cell fusion generates large numbers of binucleate cells which develop into zygote giant cells. In the absence of Ca2+, binucleate formation does not occur. When 1.0 mM CaCl2 is added to Ca2+-deficient cultures at 18 h, 50% of the cells fuse within 45 min producing large multinucleate syncytia. Small, presumptive gametes appear in Ca2+-deficient cultures and reach a peak of about 20% of the cell population by 10 h, but they maintain this plateau and do not fuse. Upon the addition of CaCl2, the presumptive gametes immediately fuse, producing binucleate cells which develop rapidly into morphologically distinct giant cells. Cell fusion continues, resulting in the formation of extremely large (40-80 microns diameter) multinucleate syncytia by 45 min. The induction of this extensive, synchronous cell fusion does not occur in the presence of other chloride salts and EGTA inhibits it, revealing that Ca+ is the regulatory ion.  相似文献   

14.
Cell fusion resulting in zygote giant cell formation is the first observable event of sexual development in D. discoideum. The results reported here show that this process is Ca2+-dependent and that by increasing the level of Ca2+ in the medium the number of cell fusions can be increased 57-fold over control cultures. The data also suggest that Ca2+ has both an early and late function in the development of zygotes and these functions are mediated at the cell surface. These results plus the availability of a liquid culture for generating large volumes of cells make sexual development in D. discoideum an excellent system for the analysis of membrane fusion in eukaryotes.  相似文献   

15.
16.
A 40,000-dalton protein that affects the assembly properties of actin in a Ca2+-dependent manner has been purified from Dictyostelium discoideum. Gel filtration chromatography indicates that the native form of this protein is a monomer. A major effect of this protein is to reduce the sedimentability of F-actin in a stoichiometric fashion. Nearly complete loss of sedimentability is observed at ratios of the 40,000-dalton protein to actin of greater than 1:10. At low stoichiometries, this protein can accelerate the rate of actin assembly under certain experimental conditions. These effects of the 40,000- dalton protein on the actin assembly properties described above require calcium ion. The 40,000-dalton protein does not exert its effects by proteolyzing actin. Furthermore, peptide maps demonstrate that this protein is not a proteolytic fragment of actin.  相似文献   

17.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

18.
A self-inhibitor of spore germination has been isolated from spores of Dictyostelium discoideum, a cellular slime mold, and chemically characterized as 2-dimethylamino-6-oxypurineriboside.  相似文献   

19.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   

20.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号