首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipogenesis in livers of fed but not of starved rats is increased after intragastric feeding with glucose. In contrast, lipogenesis in brown adipose tissue increases in both fed and starved animals. These observations suggest that lipogenesis in brown adipose tissue is regulated by mechanisms in addition to, or other than, those operating in liver. The fate of newly synthesized lipid in brown adipose tissue is not known. However, the formation of palmitoyl-carnitine from palmitoyl-CoA and carnitine by mitochondria from brown fat was inhibited by malonyl-CoA. Although inhibition was not 100%, it is implied that mitochondrial uptake of the newly synthesized fat by the carnitine acyltransferase system is restricted under conditions of increased lipogenesis.  相似文献   

2.
Developmental changes in lipogenesis have been examined in interscapular brown adipose tissue (BAT), epididymal white adipose tissue and the liver of genetically diabetic (db/db) mice and their normal siblings. Lipogenesis was measured in vivo with 3H2O, from weaning (21 days of age) until 20 weeks of age. Hyperinsulinaemia was evident in db/db mice at all ages. Low rates of lipogenesis were observed at weaning in tissues of both groups of mice, but the rate rose rapidly in the first few days post-weaning. In normal mice, peak lipogenesis was obtained in each tissue at 4-5 weeks of age, and there were no major changes (on a whole-tissue basis) thereafter. A different developmental pattern was apparent in db/db mice. The rate of lipogenesis in BAT rose sharply after weaning, reaching a peak at 26 days of age (several times higher than normal mice), and then falling rapidly such that by 45 days of age it was lower than in normal mice; at age 20 weeks lipogenesis in BAT of the diabetic animals was negligible. In white adipose tissue of the db/db mutants lipogenesis (per tissue) reached a maximum at 5 weeks of age, and fell substantially between 10 and 20 weeks of age. Hepatic lipogenesis in the db/db mice rose progressively from weaning until 8 weeks of age, and then decreased. Except at weaning, hepatic lipogenesis (per tissue) was much greater in db/db mice than in normal mice, and the liver was a more important site of lipogenesis in diabetic mice than in normals, accounting for up to 60% of the whole-body total. In contrast, BAT accounted for a considerably smaller proportion of whole-body lipogenesis in db/db mice than in normal mice. It is concluded that there are major developmental differences in lipogenesis between tissues of db/db mice, and between diabetic and normal animals. The data suggest that there is an early and preferential development of insulin resistance in BAT of the db/db mutant.  相似文献   

3.
The rate of lipogenesis in the liver was increased by glucose injection at birth, mediated by the insulin secretion. In addition, glucagon decreased the rates of lipogenesis and non-saponifiable-lipid synthesis after birth. These rates decreased after prolonged starvation in the newborn rat. Tri-iodothyronine injection increased the rates of lipogenesis enhanced in response to glucose administration after prolonged starvation in liver and brown adipose tissue. Dexamethasone, however, increased the rates of lipogenesis enhanced in response to glucose in liver and prevented the increase in the rates of lipogenesis in brown adipose tissue.  相似文献   

4.
5.
1. The effects of various treatments to alter either plasma prolactin (bromocryptine administration or removal of litter) or the metabolic activity of the mammary gland (unilateral or complete teat sealing) on the disposal of oral [14C]lipid between 14CO2 production and [14C]lipid accumulation in tissues of lactating rats were studied. In addition, the rates of lipogenesis in vivo were measured in mammary gland, brown and white adipose tissue and liver. 2. Bromocryptine administration lowered plasma prolactin, but did not alter [14C]lipid accumulation in mammary gland or in white and brown adipose tissue. 3. In contrast, complete sealing of teats results in no change in plasma prolactin, but a 90% decrease in [14C]lipid accumulation in mammary gland and a 4-fold increase in white and brown adipose tissue. The rate of lipogenesis in mammary gland was decreased by 95%, but there was no change in the rate in white and brown adipose tissue. Unilateral sealing of teats resulted in a decrease in [14C]lipid accumulation in white adipose tissue. 4. Removal of the litter for 24 h (low prolactin) produced a similar pattern to complete teat sealing, except that there was a 6-fold increase in lipogenesis in white adipose tissue. Re-suckling for 5 h increased plasma prolactin, but did not alter the response seen in litter-removed lactating rats. 5. Changes in lipoprotein lipase activity and in plasma insulin paralleled the reciprocal changes in [14C]lipid accumulation in white and brown adipose tissue and in mammary gland. 6. It is concluded that the plasma insulin is more important than prolactin in regulating lipid deposition in adipose tissue during lactation, and that any effects of prolactin must be indirect.  相似文献   

6.
Lipogenesis in brown adipose tissue of virgin rats increased 8--10-fold after intragastric feeding with glucose or medium-chain triacylglycerol, and this increase was prevented by short-term insulin deficiency. Brown adipose tissue increased in weight during pregnancy, regressed during lactation and hypertrophied again on weaning; the rate of lipogenesis paralleled these changes. Glucose did not increase brown-adipose-tissue lipogenesis at mid-lactation.  相似文献   

7.
The responses of rat hepatic and brown adipose tissue in vivo lipogenesis to premature (15 days) and normal (21 days) weaning have been correlated to changes in the activities of acetyl-CoA carboxylase and two NADPH-producing enzymes, malic enzyme and glucose-6-phosphate dehydrogenase. Both tissues show an induction of lipogenesis in response to weaning. In the liver, lipogenic flux is closely linked to the activity of acetyl-CoA carboxylase, but not necessarily that of malic enzyme or glucose-6-phosphate dehydrogenase, whereas no such dissociation between enzyme activity and flux rate occurs in brown adipose tissue. Thyroid hormones, implicated in many physiological changes around weaning, do not seem to play a primary role in the adaptation of lipogenesis to the dietary change at this time, although a permissive role in both tissues is possible.  相似文献   

8.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

9.
Chronic uraemic rats had decreased food intake, and this was accompanied by decreased weight of the epididymal fat-pads and interscapular brown adipose tissue. Normal rats whose food intake was restricted to an amount similar to that of the uraemic rats showed similar decreases in weight of the adipose-tissue depots. In addition, the food-restricted rats had decreased liver weight compared with normal or uraemic rats. The basal rate of lipogenesis was decreased in liver and epididymal fat-pads of food-restricted and uraemic rats and in interscapular brown adipose tissue of uraemic rats. Administration of a low-glucose-containing (1.36%) peritoneal-dialysis solution slightly increased lipogenesis in liver of uraemic rats, but had no significant effect in epididymal fat-pads. For brown fat, the rate of lipogenesis was increased in normal, food-restricted and uraemic groups, but the values for the last group were 4-5-fold lower than for the food-restricted or control groups. A high-glucose-containing (3.86%) peritoneal-dialysis solution gave similar rates of lipogenesis in liver, epididymal fat-pads and brown fat of all three groups, but for brown fat moderately uraemic rats showed a considerably lower rate of lipogenesis than did mildly uraemic rats. The basal plasma insulin concentration was lower in the food-restricted (50%) and uraemic (70%) groups than in the control group. The low-glucose peritoneal-dialysis solution increased plasma insulin to control values in the food-restricted rats, but had no significant effect on plasma insulin in the uraemic rats, despite a significant increase in blood glucose in this group. It is concluded that there is an impairment of the lipogenic response to intraperitoneal glucose loads in interscapular brown adipose tissue of uraemic rats, and that this is not due to the accompanying decrease in food intake. The hypoinsulinaemia may be an important factor. The possible relevance of this finding to the obesity observed in some uraemic patients treated by peritoneal dialysis with glucose-containing solutions is discussed.  相似文献   

10.
The activities of 3-oxo acid-CoA transferase (EC 2.8.3.5, 13-15 micromol/min per g) and acetoacetyl-CoA thiolase (EC 2.3.1.9, 18-21 micromol/min per g) in interscapular brown adipose tissue of the rat are comparable to the activities reported for heart and kidney. The incorporation of D-3-hydroxy[3-14C]butyrate into lipid in vivo was about 30-fold higher in interscapular brown adipose tissue than in white adipose tissue of virgin rats. In lactating rats, the mammary gland was the major site of ketone body incorporation into lipid and incorporation of D-3-hydroxy-[3-14C]butyrate into lipid in brown adipose tissue was lower than in virgin rats. After an oral load of medium chain triacylglycerol, which inhibits lipogenesis in lactating mammary gland, the incorporation of ketone bodies into lipid was decreased in mammary gland but increased in brown adipose tissue. The rate of oxidation of D-3-hydroxy[3-14C]butyrate by brown adipose tissue slices in vitro was higher than the rate of incorporation into lipid.  相似文献   

11.
A significant diurnal variation in the rates of lipogenesisin vivo in brown adipose tissue occurred in both virgin and lactating rats. On a meal-feeding regime of either a chow, high-sucrose, or high-lipid diet, there was a very large increase in BAT lipogenesis following the meal. The rates observed after the sucrose meal are the highest so far reported. There was no significant difference in BAT lipogenesis between lactating and virgin rats, contrary to previous reports by others. The pattern of stimulation of BAT lipogenesis by these feeding regimes was different from that for white adipose tissue and liver and was not correlated with plasma insulin levels.  相似文献   

12.
Intraperitoneal administration of [1,2-14C]-acetate to Wistar rats was used to assess tissue lipogenic rates after estimating the incorporation of the label into the tissular lipid fractions. Refeeding the animals with glucose (after an overnight fast) induced an increase in white adipose tissue (4.5 fold), liver (4.1 fold), small intestine (1.9 fold), carcass (2.9 fold) and spleen (3.7 fold) lipogenesis (expressed as the radioactivity present in the lipid fraction corrected by the plasma circulating radioactivity). No changes were found following refeeding in either brain or brown adipose tissue. Administration of mannoheptulose (an inhibitor of insulin secretion) to refed rats completely abolished the increased lipogenesis in white adipose tissue, liver, carcass, spleen and small intestine, thus suggesting that insulin secretion is involved in this phenomenon. This is the first report showing that spleen lipogenesis may be modulated by refeeding via insulin secretion and suggests an important role of this organ on the in vivo lipogenic response of the organism after carbohydrate refeeding. (Mol Cell Biochem 175: 149–152, 1997)  相似文献   

13.
Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.  相似文献   

14.
1. Lipogenesis in brown adipose tissue and white adipose tissue (WAT) was measured in vivo in spontaneously type II diabetic male CBA/Ca mice. 2. Lipogenic rates rose sharply in brown adipose tissue between the third and fourth month of life, concomitant with the onset of hyperinsulinaemia. However, lipogenic rates fell between the fourth and fifth month of age, and remained low, despite increasing circulating insulin concentrations. 3. Lipogenesis in white adipose tissue showed a modest response to hyperinsulinaemia followed by increasing resistance to elevated insulin concentrations after 5 months of age. 4. Studies involving either the injection of insulin or the intubation of glucose provided further evidence for the development of insulin resistance in both brown and white adipose tissue.  相似文献   

15.
Population-based studies have shown that the offspring of diabetic mothers have an increased risk of developing obesity, insulin resistance, type 2 diabetes and hypertension in later life. To investigate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers, we focused on the tissue-specific glucocorticoid regulation by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and studied offspring born to streptozotocin-induced diabetic rats. The body weights of newborn rats from diabetic mothers were heavier than those from control mothers. Offspring born to diabetic mothers demonstrated insulin resistance and mild glucose intolerance after glucose loading at 10 weeks and showed significantly increased 11beta-HSD1 mRNA and enzyme activity in adipose tissue at 12 weeks of age without obvious obesity. Hepatic 11beta-HSD1 mRNA was also elevated. We propose that the 11beta-HSD1 in adipose tissue and liver may play a key role in the development of metabolic syndrome in the offspring of diabetic mothers. Tissue-specific glucocorticoid dysregulation provides a candidate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers. Therefore early analyses before apparent obesity are needed to elucidate the molecular mechanisms that may be programmed during the fetal period.  相似文献   

16.
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.  相似文献   

17.
Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation. These studies suggest that enzymes of lipid metabolism vary seasonally in the marmot, consistent with requirements of this hibernator for triacylglycerol synthesis and metabolism.Abbreviations BAT brown adipose tissue - DGAT diacylglycerol acyltransferase - FAS fatty acid synthase - K m Michaelis constant - MGAT monoacylglycerol acyltransferase - RQ respiratory quotiant - VLDL very low density lipoprotein - WAT white adipose tissue  相似文献   

18.
Polymyxin B, a cyclic decapeptide antibiotic, increased blood glucose and lactate, and inhibited the stimulation of lipogenesis in interscapular brown adipose tissue and lactating mammary gland of starved-refed virgin and lactating rats respectively. Lipogenesis was not inhibited in white adipose tissue or liver. The antibiotic increased the haematocrit. The relative blood flow to brown adipose tissue and lactating mammary gland was decreased by polymyxin B, and this was accompanied by a decrease in tissue ATP content. In vitro polymyxin B did not affect glucose utilization or conversion into lipid, nor the stimulation by insulin of these processes in brown-adipose-tissue slices. Treatment of rats in vivo with polymyxin B resulted in decreased utilization of glucose in vitro in brown-adipose-tissue slices. Similarly, acini from mammary glands of polymyxin B-treated lactating rats had decreased rates of conversion of [1-14C]glucose to lipid. It is concluded that the effects of polymyxin B may be brought about by decreases in tissue blood flow. The possibility that these effects are secondary to inhibition of glucose utilization cannot be ruled out.  相似文献   

19.
We have previously reported that, in the rat, chronic thyroxine (T4) treatment induced a transient adipose tissue hyperplasia and that, in preadipocytes cultures, lipogenesis as well as adipose conversion were enhanced by triiodothyronine. Therefore we looked for the possibility of a relationship between in vivo stimulation of adipose tissue lipogenesis and the stimulation of fat cell recruitment by thyroid hormones. Hepatic and adipose tissue de novo lipogenesis were estimated by the incorporation of 3H2O into lipids in rats of various ages made slightly hyperthyroid by daily injections of T4 (0.2 microgram/g/day) from birth. Hepatic and adipose tissue lipogenesis were increased at 3 and 6 weeks of age, no stimulation being observed when animals get older. 21 week-old animals were therefore acutely treated with 0.2 or 2 micrograms T4/g/day. In this case, only the high T4 dose was able to induce a consistent lipogenesis stimulation in liver and in retroperitoneal adipose tissue and failed to induce it in epididymal adipose tissue. These results pointed out that thyroid hormones can stimulate lipogenesis both in liver and adipose tissue. However, there is an age related fall in the sensitivity to thyroid hormones for lipogenesis stimulation, not only in the liver, but also and more pronounced in adipose tissue, in parallel to that observed in vivo for adipose differentiation; moreover, this decreased sensitivity seems to be accelerated by a long lasting hyperthyroidal state.  相似文献   

20.
1. Pyruvate carboxylase (EC 6.4.1.1), purified from rat liver mitochondria to a specific activity of 14 units/mg, was used for the preparation of antibodies in rabbits. 2. Tissue distribution studies showed that pyruvate carboxylase was present in all rat tissues that were tested, with considerable activities both in gluconeogenic tissues such as liver and kidney and in tissues with high rates of lipogenesis such as white adipose tissue, brown adipose tissue, adrenal gland and lactating mammary gland. 3. Immunochemical titration experiments with the specific antibodies showed no differences between the inactivation of pyruvate carboxylase from mitochondrial or soluble fractions of liver, kidney, mammary gland, brown adipose tissue or white adipose tissue. 4. The antibodies were relatively less effective in reactions against pyruvate carboxylase from sheep liver than against the enzyme from rat tissues. 5. Pyruvate carboxylase antibodies did not inactivate either propionyl-CoA carboxylase or acetyl-CoA carboxylase from rat liver. 6. It is concluded that pyruvate carboxylase in lipogenic tissues is similar antigenically to the enzyme in gluconeogenic tissues and that the soluble activities of pyruvate carboxylase detected in many rat tissues do not represent discrete enzymes but are the result of mitochondrial damage during tissue homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号