首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuromelanin was isolated from human substantia nigra using different procedures. In the pigment isolated by any of these procedures a peptide component covalently bound to the melanic structure was found, as shown by treatment with reagents known to eliminate noncovalently bound proteins. The amino acid content of such a peptide component was reproducible and corresponded to approximately 15% of the neuromelanin weight. Neuromelanin also showed the ability to absorb specifically lipid molecules, approximately 20% of its weight, and among these lipids cholesterol was identified, constituting approximately 5% of the total lipid mixture. A synthetic melanin, incubated with putamen homogenate, bound tissue peptides with an amino acid content quite close to that of neuromelanin. The same synthetic melanin adsorbed a lower amount of lipids from the putamen homogenate compared with neuromelanin. The sulfur content of neuromelanin was also reproducible even using different isolation procedures. A nonpigmented tissue like corpus callosum was used as a control and extracted by the method used for neuromelanin isolation; a total elimination of tissue components was found, thus demonstrating the capability of the reported procedures to isolate neuromelanin alone. The presence of a peptide component in the neuromelanin structure and the selective affinity for lipid molecules suggest new aspects of the functional role and metabolic pathway of neuromelanin.  相似文献   

2.
Neuromelanin is a complex molecule accumulating in the catecholaminergic neurons that undergo a degenerative process in Parkinson’s disease. It has been shown to play either a protective or a toxic role depending on whether it is present in the intraneuronal or extraneuronal milieu. Understanding its structure and synthesis mechanisms is mandatory to clarify the reason for this remarkable dual behavior. In the present study, X-ray absorption spectroscopy is employed to investigate the sulfur binding mode in natural human neuromelanin, synthetic neuromelanins, and in certain structurally known model compounds, namely cysteine and decarboxytrichochrome C. Based on comparative fits of human and synthetic neuromelanin spectra in terms of those of model compounds, the occurrence of both cysteine- and trichochrome-like sulfur coordination modes is recognized, and the relative abundance of these two types of structural arrangement is determined. Data on the amount of cysteine- and trichochrome-like sulfur measured in this way indicate that among the synthetic neuromelanins those produced by enzymatic oxidation are the most similar ones to natural neuromelanin. The interest of the method described here lies in the fact that it allows the identification of different sulfur coordination environments in a physically nondestructive way.  相似文献   

3.
Abstract: Neuromelanin is a poorly understood pigment that accumulates in catecholaminergic neurons during normal aging. Electron paramagnetic resonance spectroscopy, an especially effective technique for investigating melanins, is used in the present study to show unambiguously that neuromelanin is a melanin; however, it is not well modeled by synthetic dopamine melanin and thus is an atypical melanin. Some of the unusual features of neuromelanin can be explained by postulating two distinct sources for its free radicals, the dominant one possibly derived from a precursor containing sulfur. Examination of human substantia nigra by electron paramagnetic resonance spectroscopy during the purification of neuromelanin also demonstrates, contrary to some other studies, that a portion of the paramagnetic metal ions in this tissue are bound to the pigment in situ. Combined with previous histochemical data, these observations have implications for the mechanism through which neuromelanin accumulates in vivo and are consistent with its having a cytoprotective function under normal conditions, but a cytotoxic role at advanced ages and in patients with Parkinson's disease. Other results of this study show that homogenizing tissues during the purification of any natural pigment may cause contamination of the pigment by extraneous metal ions and that subsequent incubation in hot acid, though most effective in removing metal ions and hydrolyzing proteins, leads to degradation of melanin. A purification procedure using incubation in acid at room temperature, however, is well suited for identifying and characterizing unknown natural pigments by electron paramagnetic resonance spectroscopy.  相似文献   

4.
Abstract: 57Fe Mössbauer spectroscopy at different temperatures has been used to characterize the nature of purified human neuromelanin isolated from the substantia nigra. The quantitative determination of iron(III) by estimation of the overall area of the Mössbauer spectrum at room temperature reveals an iron content of 2.8 ± 1.4%. No subspectra corresponding to divalent iron could be observed in these spectra. The derived Mössbauer parameters lead to the conclusion that the iron sites in the human neuromelanin are similar to those of human hemosiderin (or ferritin). However, owing to the water insolubility of the purified neuromelanin, it must be concluded that the neuromelanin hemosiderin (or ferritin) is bound in a protein matrix that makes it insoluble and difficult to stain histochemically. This protein attachment to neuromelanin is important in that it is what makes it different from synthetic dopamine melanin.  相似文献   

5.
Neuromelanin is a dark brown pigment present at high concentrations in dopaminergic neurones of the human substantia nigra (SN). Early electron microscopic examinations of neuromelanin fine structure revealed a significant neutral lipid component; however, the identity of this lipid has remained unknown. Here we show that the lipid component of neuromelanin pigment derived from human SN is the polyisoprenoid dolichol. Established methods were used to isolate the pigment from the SN of 32 brains and the lipid fraction was recovered in high purity and yield. Using reversed-phase HPLC, atmospheric pressure chemical ionization mass spectrometry, and 1H- and 13C-NMR techniques, we showed that the neuromelanin dolichol contained 17-23 isoprenoid units. Dolichol accounted for 14% of the mass of neuromelanin pigment; low levels of other hydrophobic compounds were detected (e.g. ubiquinone-10, alpha-tocopherol and cholesterol together accounted for < 0.5% of the neuromelanin lipid mass). This is the first time that dolichol has been identified in such a physiological setting and significantly advances our understanding of neuromelanin pigment structure and biosynthetic pathways. Furthermore, these studies identify a potential novel role for the isoprenoid pathway in the regulation of neuromelanin function and neurodegeneration within the SN.  相似文献   

6.
Pigmentation of neurons in substantia nigra is due to neuromelanin, a pigment that stores large amounts of iron. Human mesencephalic neuromelanin has been investigated by means of magnetic susceptibility measurements as a function of temperature. Magnetic measurements provide a physico-chemical characterization of the iron cluster buried in the organic melanin matrix and support the view that iron is not simply chelated, but rather is organized in a three-dimensional network. The paramagnetism of isolated iron ions is observed, in agreement with electron paramagnetic resonance spectroscopy. Furthermore, antiferromagnetic grains with a large size distribution function are present. These grains contain N spins coupled antiferromagnetically; however, N(1/2) spins are decoupled from the grain bulk and parallelly aligned. The latter subgrains are superparamagnetic with a blocking temperature ranging between 5 K and room temperature. This behavior has not been observed in synthetic melanin, where the paramagnetic contribution is strongly enhanced. Preliminary results on pigment isolated from patients affected by Parkinson's disease, a neurodegenerative pathology involving primarily pigmented neurons in substantia nigra pars compacta, show a lower total magnetization compared to control neuromelanin. The temperature behavior of zero field cooling and field cooling magnetizations is similar for both. The significant depletion of iron content in Parkinson's disease neuromelanin could indicate a progressive Fe migration from its storage environment to the cytosol.  相似文献   

7.
The effect of various natural flavonoids, cinnamic acid derivatives, and a series of synthetic flavones on cell proliferation was evaluated in vitro in a panel of established human and murine tumor cell lines. The most potent antiproliferative agents were caffeic acid n-butyl ester (12) > 2'-nitroflavone (26) > caffeic acid ethyl ester (11) approximately = 2',6-dinitroflavone (27) > apigenin (3) > 3'-bromoflavone (20) approximately = 2'-fluoro-6-bromoflavone (31). Some compounds showed a moderate effect, the order of cytotoxic activities being chrysin (2) > 2'-fluoro-6-chloroflavone (30) approximately = 2'-chlorochrysin (32) > alpha-naphthoflavone (7) > beta-naphthoflavone (8) approximately = 6-chloroflavone (14) approximately = 6-bromoflavone (15) approximately = 4'-nitroflavone (23). A structure-activity relationship analysis of each group of compounds was performed. None of the natural or synthetic compounds tested affected the proliferation of epithelial cells derived from normal mammary gland of mice or fibroblastic cells from mouse embryo, suggesting a selective action against tumor cells.  相似文献   

8.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanins and pheomelanins. These pigments can be quantitatively analyzed by acidic KMnO4 oxidation or reductive hydrolysis with hydriodic acid (HI) to form pyrrole-2,3,5-tricarboxylic acid (PTCA) or aminohydroxyphenylalanine (AHP), respectively. Dark brown melanin-like pigments are also widespread in nature, for example, in the substantia nigra of humans and primates (neuromelanin), in butterfly wings and in the fungus Cryptococcus neoformans. To characterize such diverse types of melanins, we have improved the alkaline H2O2 oxidation method of Napolitano et al. (Tetrahedron, 51: 5913–5920, 1995) and re-examined the HI hydrolysis method of Wakamatsu et al. (Neurosci. Lett., 131: 57–60, 1991). The results obtained with H2O2 oxidation show that 1) pyrrole-2,3-dicarboxylic acid (PDCA), a specific marker of 5,6-dihydroxyindole units in melanins, is produced in yields ten times higher than by acidic KMnO4 oxidation, and 2) PTCA is artificially produced from pheomelanins. The results with HI hydrolysis show that dopamine-melanin produces a 1:1 mixture of 3-amino and 4-amino isomers of aminohydroxyphenylethylamine, while the isomer ratio is about 0.2 in melanins prepared from dopamine and cysteine. These results indicate that alkaline H2O2 oxidation is useful in characterizing synthetic and natural eumelanins and that reductive hydrolysis with HI can be applied to analyzing oxidation products of dopamine such as neuromelanin.  相似文献   

9.
In Parkinson's disease (PD), dopamine neurons containing neuromelanin selectively degenerate. Neuromelanin binds iron and accumulates in aging. Iron accumulates in reactive form during aging, PD, and is involved in neurodegeneration. It is not clear how the interaction of neuromelanin and iron can be protective or toxic by modulating redox processes. Here, we investigated the interaction of neuromelanin from human substantia nigra with iron in the presence of ascorbic acid, dopamine, and hydrogen peroxide. We observed that neuromelanin blocks hydroxyl radical production by Fenton's reaction, in a dose-dependent manner. Neuromelanin also inhibited the iron-mediated oxidation of ascorbic acid, thus sparing this major antioxidant molecule in brain. The protective effect of neuromelanin on ascorbate oxidation occurs even in conditions of iron overload into neuromelanin. The blockade of iron into a stable iron–neuromelanin complex prevents dopamine oxidation, inhibiting the formation of neurotoxic dopamine quinones. The above processes occur intraneuronally in aging and PD, thus showing that neuromelanin is neuroprotective. The iron–neuromelanin complex is completely decomposed by hydrogen peroxide and its degradation rate increases with the amount of iron bound to neuromelanin. This occurs in PD when extraneuronal iron–neuromelanin is phagocytosed by microglia and iron–neuromelanin degradation releases reactive/toxic iron.  相似文献   

10.
Neuromelanin (NM) has long been considered as an aging pigment, perhaps an unavoidable and undesirable byproduct of dopaminergic neural transmission. However, NM is carefully packaged into double membrane-bound structures within cells of the substantia nigra and other neural tissues, suggesting a beneficial function to maintaining these stores. It is well established that NM is able to concentrate toxic xenobiotics within pigmented cells due to its unique chemical environment. In doing so, such agents may confer susceptibility to Parkinson’s disease (PD) as illustrated by model PD-inducing neurotoxins such as methyl-phenyl-pyridinium ion. It is possible that high-affinity binding interactions toward NM may contribute to the adverse effects of PD-inducing toxins, as well as neuroprotective agents. Here we aim to develop a generalized assay capable of elucidating the binding constants of chemical agents to synthetic and natural neuromelanins. Toward this end, a model neuromelanin synthesized from dopamine and cysteine was prepared according to published procedure. Using a UV/Visible spectroscopic assay, we show that dopamine, 6-hydroxy dopamine, and nicotine bind to the synthetic neuromelanin, while caffeine did not. More importantly, nicotine was further found to induce a fluorescence signal in the presence of NM which was used to establish a binding constant estimated at 0.65 mM. Dopamine appears to enhance this signal, also in a saturable manner, with an estimated Kd of 0.05 mM in our isolated chemical system. In summary, the micro-scale fluorescence assay described herein will allow us to overcome many of the problems inherent in the study of chemical interaction with NM through traditional spectroscopic means. Using a single standardized signal, it should now be possible to rank a number of PD-related toxins based on NM-binding affinity and shed further light on this important problem.  相似文献   

11.
Using model compounds of the melanic component of neuromelanin (NM) prepared by tyrosinase oxidation at various ratios of dopamine (DA) and cysteine (Cys) under physiological conditions, we examined a biosynthetic pathway to NM and its aging process by following the time course of oxidation to NM and the subsequent structural modification of NM under various heating conditions. Chemical degradation methods were applied to the synthetic NM. 4‐Amino‐3‐hydroxyphenylethylamine (4‐AHPEA) and thiazole‐2,4,5‐tricarboxylic acid (TTCA) were used as markers of benzothiazine and benzothiazole units, respectively. By following the time course of the biosynthetic pathway of synthetic NM, we found that neurotoxic molecules are trapped in NM. An aging simulation of synthetic NM showed that benzothiazine units in NM are gradually converted to benzothiazole during the aging process. Thus, natural NM was found to be similar to aged (heated) NM prepared from a 2:1 molar ratio of DA and Cys.  相似文献   

12.
We investigated the effects of neuromelanin (NM) isolated from the human substantia nigra and synthetic dopamine melanin (DAM) on neuronal and glial cell lines and on primary rat mesencephalic cultures. Lactate dehydrogenase (LDH) activity and lipid peroxidation were significantly increased in SK-N-SH cells by DAM but not by NM. In contrast, iron-saturated NM significantly increased LDH activity in SK-N-SH cells, compared with 100 mg/mL ETDA-treated NM containing a low concentration of bound iron. DAM, but not NM, stimulated hydroxyl radical production and increased SK-N-SH cell death via apoptotic-like mechanisms. Neither DAM nor NM induced any changes in the glial cell line U373. 3H-dopamine uptake in primary rat mesencephalic cultures was significantly reduced in DAM-compared with NM-treated cultures, accompanied by increased cell death via an apoptosis-like mechanism. Interestingly, Fenton-induced cell death was significantly decreased in cultures treated with both Fenton reagent and NM, an effect not seen in cultures treated with Fenton reagent plus DAM. These data are suggestive of a protective role for neuromelanin under conditions of high oxidative load. Our findings provide new evidence for a physiological role for neuromelanin in vivo and highlights the caution with which data based upon model systems should be interpreted.  相似文献   

13.
Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson’s disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin–BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by 1H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin–BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin–BSA conjugates appear to be good models for the natural pigment.  相似文献   

14.
The effects of dopamine-melanin (DA-melanin), a synthetic model of neuromelanin, on peroxynitrite-mediated 3-nitrotyrosine formation, oxidation of tryptophan in bovine serum albumin and inactivation of erythrocyte membrane Ca(2+)-ATPase activity were investigated in the absence and in the presence of bicarbonate. DA-melanin inhibited nitration of free tyrosine, loss of tryptophan residues and Ca(2+)-ATPase inactivation by peroxynitrite in a dose dependent manner. In the presence of bicarbonate, this inhibitory effect was lower for nitration and insignificant for oxidative protein modifications. These results suggest that neuromelanin can protect against nitrating and oxidizing action of peroxynitrite but is a worse protector against the peroxynitrite-CO(2) adduct. As peroxynitrite may be a mediator of neurotoxic processes, the obtained results suggest that neuromelanin may be important as a physiological protector against peroxynitrite.  相似文献   

15.
Using energy-dispersive x-ray analysis on an electron microscope working in the scanning transmission electron microscopy mode equipped with a microanalysis system, we studied the subcellular distribution of trace elements in neuromelanin-containing neurons of the substantia nigra zona compacta (SNZC) of three cases of idiopathic Parkinson's disease (PD) [one with Alzheimer's disease (AD)] and of three controls, in Lewy bodies of SNZC, and in synthetic dopamine-melanin chemically charged or uncharged with Fe. Weak but significant Fe peaks similar to those of a synthetic melanin-Fe3+ complex were seen only in intraneuronal highly electron-dense neuromelanin granules of SNZC cells of PD brains, with the highest levels in a case of PD plus AD, whereas a synthetic melanin-Fe2+ complex showed much lower iron peaks, indicating that neuromelanin has higher affinity for Fe3+ than for Fe2+. No detectable Fe was seen in nonmelanized cytoplasm of SNZC neurons and in the adjacent neuropil in both PD and controls, in Lewy bodies in SNZC neurons in PD, and in synthetic dopamine-melanin uncharged with iron. These findings, demonstrating for the first time a neuromelanin-iron complex in dopaminergic SNZC neurons in PD, support the assumption that an iron-melanin interaction contributes significantly to dopaminergic neurodegeneration in PD and PD plus AD.  相似文献   

16.
Oxidase electrode measurements as well as optical and electron spin resonance spectroscopic data have shown that synthetic neuromelanin oxidizes the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium in a dose-dependent manner forming 1-methyl-4-phenylpyridinium and hydrogen peroxide. Hydroxyl radicals are formed in this reaction which is promoted by iron chelates. In contrast, neither 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine nor 1-methyl-4-phenylpyridinium reacts with synthetic neuromelanin in a similar fashion. The mechanism of selective toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in pigmented neuronal cells is discussed in the light of these findings.  相似文献   

17.
The intragranular location of carboxyl groups was tinctorially determined in human substantia nigra neuromelanin granules, human inferior olive lipofuscin granules, and mouse meningeal melanosomes. Soluble and insoluble lipid was stained with beta naphthol Sudans in unoxidized and oxidized frozen and paraffin sections containing neuromelanin or lipofuscin. Nile blue demonstrated carboxyls in unoxidized neuromelanin, lipofuscin, and melanin, and in oxidized neuromelanin and lipofuscin. Carbodiimide demonstrated carboxyls in unoxidized and oxidized lipofuscin and oxidized neuromelanin. In all instances, staining for carboxyls was inhibited by prior mild methylation, and proof of their presence was obtained by a pre-staining, stepwise, alternating, and repetitive mild demethylation, mild methylation sequence. Structurally, carboxyls were demonstrated in the neuromelanin granule's soluble lipid-free lipofuscin component, in the meningeal melanosome's melanin component, and virtually throughout the lipofuscin granule. The following structural and chemical basis was proposed for the different resistance of Nile blue staining of melanosomes and of neuromelanin and lipofuscin to acetone extraction. Nile blue forms an insoluble complex with melanosomal dopa-melanin's quinonoid, diphenolic, and undissociated carboxyl units. Such complex formation does not occur in neuromelanin's carboxyl-free dopamine-melanin component, however. Instead, Nile blue ionogenicly bonds with dissociated carboxyls belonging to the neuromelanin granule's lipofuscin component.  相似文献   

18.
Certain drugs and chemicals, such as chloroquine, chlorpromazine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), are bound to melanin and retained in pigment cells for long periods. This specific retention in pigmented tissues can cause adverse effects in the skin, eye, inner ear, and pigmented nerve cells of the substantia nigra of the brain. To date, all studies have been focused on eu- and neuromelanin. In the present study, we show that chloroquine, chlorpromazine, chlomipramine, paraquat, acridine orange, and nickel, which are bound to eumelanin, also bind to synthetic pheomelanin, but the binding to pheomelanin is lower. The binding varied with the cysteine content and pH, and the results indicate that the binding is complex and includes ionic interactions. In addition, we have shown that these substances also bind to synthetic thiourea-containing melanin, but to quite a low extent. We also present a microautoradiographic study on the binding of 14C-chloroquine to natural pheomelanin in vivo in yellow mice C57BL (Ay/a). Black (C57/BL) and albino (NMRI) mice were used as controls. The autoradiography demonstrated a pronounced uptake of chloroquine in the hair follicles and the dermal melanocytes in the ear of yellow mice, which was comparable to the corresponding accumulation of label in black mice. In the albino mouse, the uptake was lower and more homogeneously distributed in the skin. These results suggest that the toxicologi-cal risks of melanin-related adverse effects are applicable to persons with a high content of pheomelanin in the skin and hair.  相似文献   

19.
Macrophage migration inhibitory factor (MIF) was originally identified several decades ago as a lymphokine-derived protein that inhibited monocyte migration. Recently, it has been reported that MIF has D-dopachrome tautomerase, phenylpyruvate tautomerase and thiol protein oxidoreductase activities, although the physiological significance of those activities is not yet clear. Here we show that MIF is able to catalyze the conversion of dopaminechrome and norepinephrinechrome, toxic quinone products of the neurotransmitters dopamine and norepinephrine, respectively, to indole derivatives that may serve as precursors to neuromelanin. Since MIF is highly expressed in human brain, these observations raise the possibility that MIF participates in a detoxification pathway for catecholamine products and could therefore have an important role for neural tissues. The potential role of MIF in the formation of neuromelanin from catecholamines is also an extremely interesting possibility.  相似文献   

20.
Melanins are UV shielding pigments found in skin and other light exposed tissues. However, a kind of melanin, named neuromelanin (NM), is found in those deep brain loci that degenerate in Parkinson's disease (PD), where no such a function may be imagined. The NM synthetic pathway, different from the one of eumelanin based on tyrosinase, is still obscure as well as its physiological function. Here we show that under conditions of excess of toxic quinone concentration, nonmelanocytic cell strains (i.e., primary keratinocytes) may accumulate a dark cytoplasmatic pigment that proved to be a melanin. The ability of pigment deposition, possibly driven by peroxidases, is restricted to diploid cells and increases cell survival acting as a sink for potentially hazardous quinones. We suggest that in the basal nuclei, exposed to high level of catecholaminergic neurotransmitters, NM deposition is a relevant antioxidant mechanism by trapping quinones and semiquinones, thus protecting neurons from accumulating damage over many years. In this perspective, just as a hypothesis, we may imagine that PD neuron degeneration is the consequence of a reduced/abrogated ability to produce neuromelanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号