共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Williams N 《Current biology : CB》2003,13(1):R3-R4
A recent meeting highlighted how much Darwinian thinking on natural selection illuminates the background to some major current human diseases and may offer insight into many more. Nigel Williams reports on a field seeking a place in mainstream medical education. 相似文献
3.
Loerch PM Lu T Dakin KA Vann JM Isaacs A Geula C Wang J Pan Y Gabuzda DH Li C Prolla TA Yankner BA 《PloS one》2008,3(10):e3329
Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes. 相似文献
4.
A. V. Sidorov 《Journal of Evolutionary Biochemistry and Physiology》2012,48(4):377-384
The review considers key issues of historical development of the nervous system, including evolution of the brain intercellular
contacts and neurotransmitter systems. Special attention is given to the structural-functional organization of the central
nervous system in a freshwater pulmonate gastropod, Lymnaea stagnalis. 相似文献
5.
6.
Zinc and disease of the brain 总被引:11,自引:0,他引:11
Koh JY 《Molecular neurobiology》2001,24(1-3):99-106
Zinc is one of the most abundant transition metals in the brain. A substantial fraction (10-15%) of brain zinc is located inside presynaptic vesicles of certain glutamatergic terminals in a free or loosely bound state. This vesicle zinc is released with neuronal activity or depolarization, probably serving physiologic functions. However, with excess release, as may occur in a variety of pathologic conditions, zinc may translocate to and accumulate in postsynaptic neurons, events which may contribute to selective neuronal cell death. Intracellular mechanisms of zinc neurotoxicity may include disturbances in energy metabolism, increases in oxidative stress, and activation of apoptosis cascades. Zinc inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and depletes nicotinamide adenine dinucleotide (NAD(+)) and adenosine triphosphate (ATP). On the other hand, zinc activates protein kinase C (PKC) and extracellular signal-regulated kinase (Erk-1/2), and induces NADPH oxidase; these events result in oxidative neuronal injury. Zinc can also trigger caspase activation and apoptosis via the p75(NTR) pathway. Interestingly, the converse-depletion of intracellular zinc-also induces neuronal death, but in this case, exclusively via classical apoptosis. In addition to the neurotoxic effect, zinc may contribute to the pathogenesis of chronic neurodegenerative disease. For example, in Alzheimer's disease (AD), mature amyloid plaques, but not preamyloid deposits, are found to contain high levels of zinc, suggesting the role of zinc in the process of plaque maturation. Further insights into roles of zinc in brain diseases may help set a new direction toward the development of effective treatments. 相似文献
7.
8.
Mitochondrial DNA (mtDNA) mutations are long known to cause diseases but also underlie tremendous population divergence in humans. It was assumed that the two types of mutations differ in one major trait: functionality. However, evidence from disease association studies, cell culture and animal models support the functionality of common mtDNA genetic variants, leading to the hypothesis that disease-causing mutations and mtDNA genetic variants share considerable common features. Here we provide evidence showing that the two types of mutations obey the rules of evolution, including random genetic drift and natural selection. This similarity does not only converge at the principle level; rather, disease-causing mutations could recapitulate the ancestral DNA sequence state. Thus, the very same mutations could either mark ancient evolutionary changes or cause disease. 相似文献
9.
10.
A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. 相似文献
11.
S. V. Saveliev 《Biology Bulletin》2009,36(2):128-138
Principal events in the early embryonic development of the nervous system, from neurulation to primary differentiation, are considered in different amphibian species. Attention is paid to numerous interspecific differences in the structure of neuroepithelium and the patterns of neurulation and embryonic brain segmentation. The data presented indicate that similarity in brain developmental patterns is apparently explained by universality of morphogenetic mechanisms rather than by the common origin of particular species. A hypothesis is proposed that similarity in the shape of the developing amphibian brain is determined by mechanisms of coding positional information necessary for histogenetic differentiation. 相似文献
12.
COURVILLE CB 《California medicine》1953,79(3):214-217
The author advances the concept that anoxemia, either in its general or restricted form, or both, is probably responsible for a considerable portion of "degenerative diseases," whose etiologic delineation has not yet been traced. It is necessary, he believes, to enlarge greatly the comprehension of the disordered circulatory states to include oxygen want and thereby account for a number of conditions hitherto considered to be of unknown cause. More than this, he finds in oxygen want an explanation of the mechanism of a number of individual lesions or details of lesions otherwise not well understood. The author believes it is very likely that an understanding of cerebral anoxia in its ultimate ramifications will open still wider doors to the understanding of certain clinical syndromes the cause of which remains obscure. 相似文献
13.
14.
Today, Karl Deisseroth was awarded the 4 million euro 2017 Else Kröner Fresenius Prize for his discoveries of optogenetics and of hydrogel‐tissue chemistry, and for developing circuit‐level insight into depression. We asked him how his and related work enhances our understanding of the brain and psychiatric diseases at the molecular level. 相似文献
15.
This paper assesses selective pressures that shaped primate life histories, with particular attention to the evolution of longer juvenile periods and increased brain sizes. We evaluate the effects of social complexity (as indexed by group size) and foraging complexity (as indexed by percent fruit and seeds in the diet) on the length of the juvenile period, brain size, and brain ratios (neocortex and executive brain ratios) while controlling for positive covariance among body size, life span, and home range. Results support strong components of diet, life span, and population density acting on juvenile periods and of home range acting on relative brain sizes. Social-complexity arguments for the evolution of primate intelligence are compelling given strong positive correlations between brain ratios and group size while controlling for potential confounding variables. We conclude that both social and ecological components acting at variable intensities in different primate clades are important for understanding variation in primate life histories. 相似文献
16.
17.
In vertebrate evolution, the brain exhibits both conserved and unique morphological features in each animal group. Thus, the molecular program of nervous system development is expected to have experienced various changes through evolution. In this review, we discuss recent data from the agnathan lamprey (jawless vertebrate) together with available information from amphioxus and speculate the sequence of changes during chordate evolution that have been brought into the brain developmental plan to yield the current variety of the gnathostome (jawed vertebrate) brains. 相似文献
18.
19.
Feldman EJ 《The Western journal of medicine》1985,143(2):235-236
20.
Syková E 《Neurochemistry international》2004,45(4):453-466
Extrasynaptic transmission between neurons and communication between neurons and glia are mediated by the diffusion of neuroactive substances in the extracellular space (ECS)--volume transmission. Diffusion in the CNS is inhomogeneous and often not uniform in all directions (anisotropic). Ionic changes and amino acid release result in cellular (particularly glial) swelling, compensated for by ECS shrinkage and a decrease in the apparent diffusion coefficients of neuroactive substances or water (ADCW). The diffusion parameters of the CNS in adult mammals (including humans), ECS volume fraction alpha (alpha = ECS volume/total tissue volume; normally 0.20-0.25) and tortuosity lambda (lambda2 = D/ADC; normally 1.5-1.6), hinder the diffusion of neuroactive substances and water. A significant decrease in ECS volume and an increase in diffusion barriers (tortuosity) and anisoptropy have been observed during stimulation, lactation or learning deficits during aging, due to structural changes such as astrogliosis, the re-arrangement of astrocytic processes and a loss of extracellular matrix. Decreases in the apparent diffusion coefficient of tetramethylammonium (ADCTMA) and ADCW due to astrogliosis and increased proteoglycan expression were found in the brain after injury and in grafts of fetal tissue. Tenascin-R and tenascin C-deficient mice also showed significant changes in ADCTMA and ADCW, suggesting an important role for extracellular matrix molecules in ECS diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes towards synapses, the efficacy of glutamate or GABA 'spillover' and synaptic crosstalk, the migration of cells, the action of hormones and the toxic effects of neuroactive substances and can be important for diagnosis, drug delivery and new treatment strategies. 相似文献