首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A crude aqueous extract of the leaves of T. flavescens when administered orally to vitamin D-deficient chicks produced significant increases in plasma phosphate but had little effect on plasma calcium. When chicks, fed a high strontium diet to inhibit endogenous 1,25(OH)2 vitamin D3 production and intestinal calcium transport, were dosed with the extract or synthetic 1,25(OH)2D345Ca absorption from the duodenum in vivo was stimulated, whereas vitamin D3 was ineffective. Partial purification of the crude extract on a Sephadex GH25 column yielded two factors, one of which mimicked 1,25 (OH)2D3 activity in chicks fed the high strontium diet while the other produced a significant increase in plasma phosphate. The presence of these substances, together with previously demonstrated organic solvent soluble vitamin D-type activity, may account for the calcinogenic nature of the plant.  相似文献   

2.
A new metabolite of vitamin D3 has been isolated in pure form from incubations of rat kidney homogenates with 25-hydroxyvitamin D3 [25-OH-D3]. It was identified as 23,25-dihydroxy-24-oxo-vitamin D3 [23,25(OH)2-24-oxo-D3] by means of ultraviolet absorption spectrophotometry and mass spectrometry. Also, 25-OH-D3-26,23-lactone and 24R,25-dihydroxyvitamin D3 were obtained from the same incubation mixtures. The enzyme activity responsible for the conversion of 25-OH-D3 to 23,25(OH)2-24-oxo-D3 was induced by perfusion of the kidneys invitro with 50 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3].  相似文献   

3.
The water soluble calcinogenic factor present in the plant Solanummalacoxylon is partially purified by selective extraction and chromatography on silicic acid and then hydrolyzed with a mixed preparation of glycosidases from the sea worm, Charonialampus. Hydrolysis produces a chloroform soluble factor with biologic characteristics of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), the hormonal form of vitamin D. Purification of this factor is accomplished by chromatography on Sephadex LH-20, silicic acid, and Celite columns, yielding 3 μg of active material. During the isolation, bioactivity (as assessed by the ability of fractions to compete with labeled 1,25-(OH)2D3 for binding to a specific intestinal receptor protein) migrates exactly with authentic tritiated 1,25-(OH)2D3. The purified factor has an ultraviolet absorption spectrum identical to that of 1,25-(OH)2D3 and analysis via direct probe mass spectrometry yields a parent molecular ion of m/e 416 and a fragmentation pattern indistinguishable from synthetic 1,25-(OH)2D3 hormone. We therefore conclude that the vitamin D-like principle in Solanummalacoxylon is a sterol-glycoside which contains the 1,25-(OH)2D3 molecule as its active sterol component.  相似文献   

4.
Vitamin D3 and its biologically active metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are shown to induce in the chick intestine and kidney the biosynthesis of a calcium binding protein (CaBP). In vitamin D3-replete chickens raised under adequate dietary calcium (Ca) and phosphorus (P) conditions, the steady-state level of intestinal CaBP (30–50 g/mg protein) is 5- to 20-fold greater than that of renal CaBP. Whereas dietary phosphorus restriction is known to elevate both intestinal and renal CaBP levels, dietary calcium restriction elevates only intestinal CaBP. The present study reports the rates of biosynthesis in vivo and in vitro, and of biodegradation in vivo, of both intestinal and renal CaBP after administration of vitamin D3 or 1,25(OH)2D3 to rachitic chicks. The apparent rate constant of degradation for intestinal CaBP was 0.024 h?1 (t12 = 29 h) and that for renal CaBP was 0.019 h?1 (t12 = 36 h) while total cellular soluble protein in the intestine and kidney had half-lives of 43 and 70 h, respectively. The time course of induction of the synthesis of CaBP was determined in intestine and kidney after administration of a physiological dose of 1,25(OH)2D3 to rachitic chicks. Intestinal CaBP synthesis was detectable by 3 hours, reached a maximal rate by 10 hours, and sharply decayed by 16–20 hours. The time course of induction of renal CaBP synthesis was very similar, although the rate of renal CaBP synthesis was readily detectable at the initial time of administration of 1,25(OH)2D3. The relative rates of synthesis of CaBP in the intestine and kidney under a variety of dietary Ca and P conditions in the vitamin D3-replete chick exactly paralleled the steady-state level of CaBP in these two tissues. These results are consistent with a model in which the steady-state levels of intestinal and renal CaBP are solely determined by their respective rates of biosynthesis; the CaBP biosynthetic capability, in turn, is regulated by the availability of 1,25(OH)2D3 to each target organ.  相似文献   

5.
Administration of an aqueous extract of the calcinogenic plant Solanummalacoxylon (S.m.) to vitamin D-deficient or strontium fed chicks produces significant plasma 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) activity within 6 hr. (via radioreceptor assay) and subsequently elicits the appearance of immunoreactive intestinal calcium binding protein. Studies of a purified aqueous extract of S.m. show that it does not compete effectively with radioactive 1,25-(OH)2D3 for binding to the sterol's intestinal receptor. However, treatment of the extract with β-glucosidase releases a biologically active substance which is soluble in organic solvents and efficiently competes with labeled sterol for the receptor. This factor migrates exactly with tritiated 1,25-(OH)2D3 on high resolution Celite liquid-liquid partition columns. Thus, S.m. contains a molecule very similar or identical to 1,25-(OH)2D3 which is combined with one or more carbohydrate moieties in the native plant. This glycoside is probably cleaved invivo before biological activity is attained.  相似文献   

6.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+1]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorephenoxy)ethane-N, N, N′, N′-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118±4 nM to a peak value of 237±8 nM within 40 min. 1,25-(OH)2D3 also increased the intial rate of Ca2+ influx into ROs 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effects on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 μM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

7.
The grass Trisetum flavescens causes severe calcification of soft tissues upon ingestion by various species, which has been ascribed by others to a 1,25(OH)2 vitamin D3-like activity.By a special purification procedure involving high pressure liquid chromatography and continuous biological testing the active principle was purified. By means of GCMS it was identified as cholecalciferol, being present in a concentration of about 0.1 ppm in the lyophylized plant dry matter. 1,25(OH)2 vitamin D3 or other metabolites of vitamin D3 were not present. Since such low concentrations could hardly explain the calcinosis observed, a more active “bound form” of vitamin D3 may be present in Trisetum flavescens.  相似文献   

8.
Sarcoid granulomas metabolized 25-hydroxyvitamin D3 to two unidentified metabolites during invitro incubation. A two-step high pressure liquid chromatography system revealed two unique elution positions of these sarcoid-derived metabolites that exactly comigrated with the elution positions of 5(Z)-19-nor-10-oxo-25(OH)D3 and 5(E)-19-nor-10-oxo-25(OH)D3, respectively. These unique metabolites did not bind specifically to a protein receptor for 1,25(OH)2D3.  相似文献   

9.
This study examines the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on SH-SY5Y human neuroblastoma cells cultured in the presence of medium containing varying concentrations of calcium (0.1, 0.9, 1.4, 1.8 mM). Pyruvate kinase activity was assayed in SH-SY5Y cells incubated in variable calcium medium with or without 1, 10 or 100 nM 1,25(OH)2D3 for 48 h. The enzyme levels showed a significant increase in comparison with control, when the cells were incubated with 100 nM hormone in the presence of 0.1 mM calcium, while pyruvate kinase activity decreased, when the cells were treated with 100 nM 1,25(OH)2D3 in the presence of 1.8 mM calcium. The proliferative activity of SH-SY5Y was dependent on the extracellular concentration of calcium, being the highest at 1.8 mM calcium and completely absent at 0.1 mM calcium. In the presence of 1,25(OH)2D3, at the three concentrations used and after 48 h incubation, a significant decrease in cell number was always observed, without a direct correlation between 1,25(OH)2D3 effect and calcium concentration in the medium. [3H]Thymidine incorporation in SH-SY5Y cells significantly increased in comparison with control, when the 48 h incubation with 1, 10 or 100 nM 1,25(OH)2D3 was carried out in the presence of 0.1 mM calcium, while, at the other calcium concentrations, the hormone did not cause any significant change in this parameter. The treatment of SH-SY5Y cells with 1 nM 1,25(OH)2D3 for 48 h did not affect cell morphology, when 0.1 mM calcium was present, while, in the medium containing 1.8 mM calcium, the treated cells showed a slight trend to differentiation. The differentiating effect of 10 M all-trans retinoic acid, even if incomplete after 48 h treatment, was only observed in the cultures grown in 1.8 mM calcium, in comparison with those maintained in 0.1 mM calcium.  相似文献   

10.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

11.
The biologically active metabolite of vitamin D3, 1,25 (OH)2 D3, exerts important immunoregulatory effects in addition to being a central mediator of calcium/phosphate metabolism. Utilizing an interleukin 1 responsive murine T cell line and 125I-interleukin 1α, we show that 1,25 (OH)2 D3 (5,50 nM) enhanced 125I-interleukin 1α binding up to almost 2-fold over control. This 1,25 (OH)2 D3 effect occurred in a dose-dependent manner and was detectable after 24 h but not before 7 h of culture. Scatchard analysis of 125I-interleukin 1α binding data demonstrated that 1,25 (OH)2 D3 enhanced interleukin 1 receptor number without a significant change in affinity. The biologically less potent metabolite of vitamin D3, 25 (OH) D3, also augmented 125I-interleukin 1α binding but at steroid levels 2–3 log orders greater than 1,25 (OH)2 D3. This observation, combined with the presence of high-affinity 3H-1,25 (OH)2 D3 receptors (88 sites/cell, K = 0.45 nM) in cytosolic extracts, strongly suggests that the nuclear vitamin D receptor mediates this steroid's effect on interleukin 1 receptor expression. Based on the capacity of an anti-type 1 interleukin 1 receptor monoclonal antibody (35F5) to block 1,25 (OH)2 D3-enhanced 125I-interleukin 1α binding, we conclude that this steroid augments type 1 interleukin 1 receptor expression. When combined with interleukin 1, a cytokine that also impacts MD10 interleukin 1 receptor expression, 1,25 (OH)2 D3 enhanced interleukin 1 receptor expression. Northern blots hybridized with a 32P-type 1 interleukin 1 receptor cDNA probe show that 1,25 (OH)2 D3 enhanced type 1 interleukin 1 receptor steady state mRNA levels. Functionally, 1,25 (OH)2 D3 pretreatment augmented the MD10 proliferative response to suboptimal levels of interleukin 1 (< 100 fM interleukin 1α). These findings further support 1,25 (OH)2 D3's role as an immunoregulatory molecule and provides a possible mechanism by which this steroid could potentiate certain immune activities.  相似文献   

12.
 The sterol 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] can inhibit T cell activation as well as restore the functional competence of suppressed T cells. The present studies determined whether 1,25(OH)2D3 had a differential effect on the activation of normal T cells or of suppressed T cells from mice bearing Lewis lung carcinoma tumors. Normal spleen cell proliferation in response to immobilized anti-CD3 was unaffected by the lower doses of 0.1 – 10 nM 1,25(OH)2D3, and was inhibited by the higher dose of 100 nM 1,25(OH)2D3. In contrast, 1,25(OH)2D3 increased proliferation and interferon γ secretion by T cells of tumor bearers in response to stimulation through T cell receptor/CD3. Assessment of mechanisms associated with the 1,25(OH)2D3 stimulation of tumor-bearer T cells implicated protein phosphatase 2A (PP-2A). First, PP-2A activity of spleen cells from tumor bearers was reduced compared to that of normal spleen cells but was increased by 1,25(OH)2D3. Second, 1,25(OH)2D3 stimulation of tumor-bearer T cell proliferation was dependent on this PP-2A activity as it was blocked by doses of okadaic acid that selectively inhibit PP-2A. These results suggest that 1,25(OH)2D3 preferentially enhances the responsiveness of immunosuppressed T cells from tumor bearers to TCR/CD3 stimulation by restoring PP-2A activity. Received: 7 November 1996 / Accepted: 2 January 1997  相似文献   

13.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] receptor was characterized after partial purification of thymus cytosol by ammonium sulfate fractionation. The 1,25-(OH)2D3 receptor sediments at 3.7S in 5–20% sucrose gradients. The binding of 1,25-(OH)2D3 in thymic cytosol was a saturable process with high affinity (Kd = 0.12?0.48 nM) at 4°C. Competition for 1,25-(OH)2[3H]D3 receptor by nonradioactive analogs demonstrated the affinities of these analogs to be in order; 1,25-(OH)2D3 = 1,24R,25-(OH)3D3 = 1,25S,26-(OH)3D3 = 1,25R,26-(OH)3D3 > 1,25-(OH)2D3-26,23 lactone > 25-OHD3 > 23R,25-(OH)2D3 > 24R,25-(OH)2D3 > 23S,25-(OH)2D3 ? 25-OHD3-26,23 lactone. The receptor bound to DNA cellulose columns in low salt buffer and eluted as a single peak at 0.21 M KCl. These findings provide evidence that the thymus possesses a 1,25-(OH)2D3 receptor with properties indistinguishable from 1,25-(OH)2D3 receptors in other tissues.  相似文献   

14.
15.
Vitamin D has been reported to regulate the maturation and function of dendritic cells (DCs). Obesity was shown to be associated with the dysregulation of vitamin D metabolism and malfunction of DCs. We investigated the effects of in vitro 1,25(OH)2D3 treatment (0, 1, or 10 nM) on phenotype and expression of genes related to function of bone marrow-derived DCs (BMDCs) from control and obese mice. C57BL/6 N mice were fed a control or high-fat (10% or 45% kcal fat: CON or HFD) diets for 15 weeks. Differentiation toward DCs was induced with GM-CSF (20 ng/ml) and maturation was induced by LPS (50 ng/ml); 10 nM 1,25(OH)2D3 treatment inhibited BMDC differentiation (CD11c+) and decreased the percentage of mature DCs (MHCIIhighCD11c+ and CD86highCD11c+) in both CON and HFD groups. The Il10 expression in stimulated BMDCs from the CON group increased with the 10 nM 1,25(OH)2D3 treatment, but not in those from the HFD group. The Il12b mRNA levels in stimulated BMDCs were lower in the HFD group than in the CON group. In conclusion, lower levels of Cd 40, Cd83 and Il12 mRNA in LPS-stimulated BMDCs from obese mice suggest malfunction of DCs as antigen presenting cells. 1,25(OH)2D3 treatment inhibited the differentiation and maturation of BMDCs in both control and obese mice. Differential effects of 1,25(OH)2D3 on the expression of Il10 between control and obese mice suggest that regulation of immune response by vitamin D could be influenced by obesity.  相似文献   

16.
1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient rats suppresses accumulation of 1,25-dihydroxy-[3α-3H]vitamin D3 and stimulates accumulation of 24,25-dihydroxy-[3α-33H]vitamin D3 from 25-hydroxy-[3α-3H]vitamin D3 equally well in the presence and absence of parathyroid glands. These results demonstrate that this regulatory action is not mediated by the parathyroid glands and support conclusions from invitro studies that this represents a direct action of 1,25-dihydroxyvitamin D3.  相似文献   

17.
Cultured osteogenic sarcoma (OS) cells have been used here to study the internalization of 1,25(OH)2D3 and other major metabolites of D3 by cells. Intact OS cells incubated for 1h at 37°C in medium containing [3H]1,25(OH)2D3 at low concentrations (0.16 to 1.6nM) take up and retain this hormone with high affinity (Kd=3.3×10?10M) similar to that found for the hormone-receptor interaction in cytosol preparations. Vitamin D3 and its major metabolites such as 25(OH)D3 or 24,25(OH)2D3, even at supraphysiological concentrations, are not internalized by the cells when small amounts of plasma D binding protein (DBP) or human alpha-globulin are added to the incubation medium. This phenomenon can be exploited to develop a non-chromatographic cytoreceptor assay for 1,25(OH)2D3.  相似文献   

18.
A single protein band of molecular weight 110 000 has been obtained after sodium dodecyl sulfate polyacrylamide gel electrophoresis of purified 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D-3) receptor from crude nuclear extracts of chick intestinal mucosa, prepared in the presence of the protease inhibitors phenylmethylsulfonyl fluoride and ?-aminocaproic acid. The nuclear extract was subjected to a six-step purification scheme, involving polymin P and ammonium sulfate fractionation, DNA-cellulose affinity chromatography, Sephacryl S-200 gel filtration, blue dextran-Sepharose and a final DNA-cellulose chromatographic step. The receptor was obtained in about 1% yield and was purified approx. 3700-fold from the nuclear extract, as assessed by specific activity. Single peaks were observed with 3H-1,25-(OH)2D-3-labeled crude nuclear extracts on Sephacryl S-200 gel filtration (Strokes′ radius = 35.5 A?) and sucrose density gradient centrifugation (3.5 S). Although the identity of the Mr 110 000 protein will remain inconclusive until methods for further characterization are available, it may represent evidence for a higher molecular weight form of the 1,25-(OH)2D-3 receptor than that observed previously.  相似文献   

19.
The primary culture of kidney cells from vitamin D deficient chicks is described. After four days in culture the cells reach confluency and retain their ability to metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. Addition of one unit of bovine parathyroid hormone to the culture medium for 48 hours prior to assay had no effect on the cells' ability to produce 1,25-dihydroxy vitamin D3, whereas after 24 hours in the presence of 5×10?8M 1,25-dihydroxyvitamin D3 the cells produced not this metabolite, but 24,25-dihydroxyvitamin D3. This cell culture system will allow the investigation of the regulation of renal 25-hydroxyvitamin D3 metabolism under controlled in vitro conditions.  相似文献   

20.
In this study, we investigated the possibility that cultured keratinocytes from normal human adult skin produce 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3, a biologically active form of vitamin D-3) from 25-hydroxyvitamin D-3 [25(OH)D3], and that 1,25(OH)2D3 endogenously produced by keratinocytes is involved in the self regulation of their growth and differentiation. To determine whether 1,25(OH)2D3 is produced from 25(OH)D3 by skin keratinocytes, 25(OH)[3H]D3 was added to keratinocyte cultures and incubated for 1 h and 5 h. The intracellular and extracellular metabolites were analyzed by three chromatographic systems. The three chromatograms revealed that the major metabolite produced from 25(OH)2D3 was 1,25(OH)2D3. Most of the 1,25(OH)2D3 endogenously produced from 25(OH)D3 remained within the cells. To examine the time course of 1,25(OH)2D3 production, the amount of 1,25(OH)[3H]D3 was measured at 15 min, 1 h, 5 h and 10 h, being at a maximum 1 h after the addition of 25(OH)D3. These data indicate that keratinocytes rapidly convert 25(OH)D3 to 1,25(OH)2D3 and that 1,25(OH)2D3 is not released into the medium. To determine whether endogenously produced 1,25(OH)2D3 is involved in the regulation of growth and differentiation of normal human keratinocytes, we examined the effects of 1,25(OH)2D3 and 25(OH)D3 on their growth and differentiation. Keratinocyte growth was inhibited to 52.6% and 23.4% by 10?8 M and 10?7 M 1,25(OH)2D3 and to 80.5% and 23.9% by 10?8 M and 10?7 M 25(OH)D3, respectively. Differentiation of these cells was evaluated by quantifying the number which express involucrin, a precursor protein of cornified envelope. The population of involucrin expressing cells (differentiated cells) increased from 6.2% to 14.5% by 2.5·10?7 M 1,25(OH)2D3, and to 11.8% by 2.5·10?7 M 25(OH)D3. These results clearly indicate that 25(OH)D3 is as effective on human keratinocytes as 1,25(OH)2D3 in inhibiting growth and inducing differentiation, although to a slightly lesser extent than 1,25(OH)2D3. The possibility that the effect of 25(OH)D3 is mediated through binding to the 1,25(OH)2D3 receptor can be excluded, since a competitive binding assay revealed that the affinity of 25(OH)D3 for the 1,25(OH)2D3 receptor in a cytosolic extract of keratinocytes was 100-times lower than that of 1,25(OH)2D3. Thus, these results suggest that 1,25(OH)2D3 endogenously produced in keratinocytes from 25(OH)D3 is involved in the regulation of their growth and differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号