首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructural changes which occur during the mycelium to yeast transition in Histoplasma capsulatum induced by a temperature shift from 25 degrees C to 34 degrees C are described and compared to those observed after a temperature shift from 25 degrees C to 37 degrees C. 24 hours after the temperature shift to 34 degrees C only 8% of the cells are lysed. However, many mitochondria have lost their characteristic elongated form and have become rounded. Vesicular cristae which are no longer oriented parallel to the long axis of the mitochondria are also observed. In contrast a temperature shift from 25 degrees C to 37 degrees C induces lysis of 70% of the cells; mitochondria are rarely observed in the remaining cells. These ultrastructural changes can be correlated with the uncoupling of oxidative phosphorylation and the production of heat shock proteins.  相似文献   

2.
Morphologically intact structures have been isolated from anaerobically grown yeast cells which have many of the properties of yeast mitochondria. The structures are about 0.5 µ in diameter and contain malate dehydrogenase, succinate dehydrogenase, oligomycin-sensitive ATPase, and DNA of buoyant density 1.683 g/cc, characteristic of yeast mitochondria. The morphology of the structures is critically dependent on their lipid composition. When isolated from cells grown anaerobically in the presence of supplements of unsaturated fatty acid and ergosterol, their unsaturated fatty acid content is similar to that of mitochondria from aerobically grown cells. These lipid-complete structures consist pre-dominantly of double-membrane vesicles enclosing a dense matrix which contains a folded inner membrane system bordering electron-transparent regions which are somewhat different from the cristae of functional mitochondria. In contrast, the structures from cells grown without lipid supplements are much simpler in morphology; they have a dense granular matrix surrounded by a double membrane but have no obvious folded inner membrane system within the matrix. The lipid-depleted structures are very fragile and are only isolated in intact form from protoplasts that have been prefixed with glutaraldehyde  相似文献   

3.
The chitinase and N-acetylglucosaminidase activities in cell-wall-bound and free fractions in the dimorphic fungus Benjaminiella poitrasii were studied as a function of morphological (unicellular yeast-mycelium) transition. The specific activities of chitinases of cell-wall-free, particularly in the membrane fraction, were significantly different in the yeast and mycelial forms. During the yeast-mycelium transition, the N-acetylglucosaminidase activity isolated in a membrane preparation increased steadily. The activity of the yeast cells (0.83 +/- 0.17 nkat/mg protein) increased 17-fold to 14.2 +/- 1.7 nkat/mg protein in 1-d-old mycelial cells. The endochitinase activity increased 12-fold between 6 and 12 h and thereafter practically remained unchanged up to 24 h. A reverse trend in the chitinolytic activities was observed during the mycelium-yeast transition. Isoelectrofocussing (pH range 3.5-10) of mixed membrane fraction free of particulate fraction of parent and morphological (Y-5, yeast-form) mutant cells separated endochitinase and N-acetylglucosaminidase activity into two pH ranges, viz. 4.3-5.7 and 6.1-7.7, respectively. The predominant N-acetylglucosaminidase activity observed at pH 6.9 and 7.1 for the parent strain membrane fraction was undetected in the mutant preparation. The results suggested that the membrane-bound (either tightly or loosely) chitinolytic enzymes, particularly, N-acetylglucosaminidase, significantly contributed to the morphological changes in B. poitrasii.  相似文献   

4.
Mitochondrial bioenergetic impairment has been found in the organelles isolated from rat liver during the prereplicative phase of liver regeneration. To gain insight into the mechanism underlying this impairment, we investigated mitochondrial ultrastructure and membrane permeability properties in the course of liver regeneration after partial hepatectomy, with special interest to the role played by Ca2+ in this process. The results show that during the first day after partial hepatectomy, significant changes in the ultrastructure of mitochondria in situ occur. Mitochondrial swelling and release from mitochondria of both glutamate dehydrogenase and aspartate aminotransferase isoenzymes with an increase in the mitochondrial Ca2+ content were also observed. Cyclosporin-A proved to be able to prevent the changes in mitochondrial membrane permeability properties. At 24 h after partial hepatectomy, despite alteration in mitochondrial membrane permeability properties, no release of cytochrome c was found. The ultrastructure of mitochondria, the membrane permeability properties and the Ca2+ content returned to normal values during the replicative phase of liver regeneration. These results suggest that, during the prereplicative phase of liver regeneration, the changes in mitochondrial ultrastructure observed in liver specimens were correlated with Ca2+-induced permeability transition in mitochondria.  相似文献   

5.
Sedimentation assays were used to demonstrate and characterize binding of isolated yeast mitochondria to phalloidin-stabilized yeast F-actin. These actin-mitochondrial interactions are ATP sensitive, saturable, reversible, and do not depend upon mitochondrial membrane potential. Protease digestion of mitochondrial outer membrane proteins or saturation of myosin-binding sites on F-actin with the S1 subfragment of skeletal myosin block binding. These observations indicate that a protein (or proteins) on the mitochondrial surface mediates ATP-sensitive, reversible binding of mitochondria to the lateral surface of microfilaments. Actin copurifies with mitochondria during subcellular fractionation and is released from the organelle upon treatment with ATP. Thus, actin-mitochondrial interactions resembling those observed in vitro may also exist in intact yeast cells. Finally, a yeast mutant bearing a temperature-sensitive mutation in the actin-encoding ACT1 gene (act1-3) displays temperature-dependent defects in transfer of mitochondria from mother cells to newly developed buds during yeast cell mitosis.  相似文献   

6.
Yeast cells grown anaerobically in 0.02% linoleic acid were transferred to air in the presence of 0.02% elaidic acid. At varying times Arrhenius plots were made of QH2-cytochrome c reductase activities in isolated mitochondria. A transition temperature of 8.2 degrees C at 0.5 h was characteristic of linoleate; at 3 h the transition temperature was increased to 24 degrees C characteristic of elaidate. At early times the enzyme was associated with anaerobic promitochondrial membranes; at later states the newly synthesized enzyme was associated with newly developed elaidate membranes.  相似文献   

7.
8.
Ultrastructural organization of the aerobic yeast Yarrowia lipolytica was studied under conditions of oxidative, heat, and ethanol stresses. It was shown that the following uniform changes in cell ultrastructure did not depend on the type of stress: enlargement of mitochondria, enhanced number and enlargement of peroxisomes, and formation of lipid granules. Similar ultrastructural changes also occurred during the transition of cells to the stationary growth phase. It was shown for the first time that accumulation of polyphosphate granules occurred as a stress response in yeasts. Moreover, numerous globular structures of unknown nature appeared on the cell wall surface under oxidative or heat stress. Under ethanol stress, the cells developed clearly marked deep invaginations of the cytoplasmic membrane. (The same changes in the cytoplasmic membrane were observed in the cells grown on ethanol.) Variations of the cell envelope structure along with the formation of polyphosphate granules were not observed in the stationary growth phase. Ultrastructural changes in the cells under stress conditions are in agreement with the previous data on survival, respiratory activity, and variations of the antioxidant systems.  相似文献   

9.
Age-related changes in regional brain mitochondria from Fischer 344 rats   总被引:1,自引:0,他引:1  
Brain mitochondrial function has been posited to decline with aging. In order to test this hypothesis, cortical and striatal mitochondria were isolated from Fischer 344 rats at 2, 5, 11, 24 and 33 months of age. Mitochondrial membrane potential remained stable through 24 months, declining slightly in mitochondria from both brain regions at 33 months. The ability of calcium to induce mitochondrial swelling and depolarization, characteristics of the permeability transition, was remarkably stable through 24 months of age and increased at advanced ages only for cortical, but not striatal, mitochondria. Striatal mitochondria were more sensitive to calcium than were cortical mitochondria throughout the first 2 years of life. A two-fold increased resistance to calcium was observed in striatal mitochondria between 5 and 11 months. Although these measurements do demonstrate changes in mitochondrial function with aging, the changes in polarization are relatively small and the increased cortical susceptibility to the permeability transition only occurred at very advanced ages. Thus mitochondrial decline with advanced age depends upon brain region.  相似文献   

10.
The authors describe ultrastructural changes in and around rat brain capillaries after hypoxia. The experimental animals breathed a mixture of 5% oxygen and 95% nitrogen for two or for three hours; a third group, which spent three hours in this atmosphere, was treated 24 h later. Cytoplasm processes and vesicles were observed on the luminal side in the endothelial cells, while the cytoplasm contained vacuoles and altered mitochondria. The basement membrane of the brain capillaries was uneven and longitudinal clear zones were formed in it. Altered mitochondria were present in the pericytes and astrocytes. The most pronounced changes were found in the astrocyte processes, which were light and hydrated and contained destroyed mitochondria and lamellar bodies resembling myelin. After 24 h, morphological changes still persisted, especially in the astrocyte processes.  相似文献   

11.
Changes in the thermal phase transition temperature of membrane lipids were studied by X-ray wide-angle diffraction during adaptation of Tetrahymena pyriformis to a lower growth temperature. After a shift in growth temperature from 39 to 15 degrees C, the phase transition temperature was lowered gradually in microsomal and pellicular phospholipids, whereas that in mitochondrial phospholipids was unchanged for 10 h after the temperature shift. Only a small decrease in the transition temperature of mitochondrial phospholipids was observed, even after 24 h following the shift. Transition temperatures of microsomal, pellicular and mitochondrial phospholipids reached the growth temperature (15 degrees C) about 6, 10 and 24 h after the temperature shift. The temperature dependence of the solid phase in membrane phospholipids was estimated from the 4.2 A peak of the X-ray diffraction pattern. In the case of the phospholipids extracted from cells grown at 39 degrees C, the solid phase was increased upon lowering temperature in a similar manner in all three membrane fractions: mitochondria, pellicles and microsomes. However, in the case of the phospholipids from cells exposed to a lower growth temperature (15 degrees C) for 10 h, the increase in the solid phase was significantly smaller in mitochondrial phospholipids than in two other membrane fractions. The difference in the thermal behaviour of mitochondrial lipid from pellicular and microsomal lipids is discussed in terms of phase transition and phase separation.  相似文献   

12.
A technique has been developed for the electron microscope studyof the free cells and small cell aggregates of suspension culturesof Acer pseudoplatanus, L. Changes in fine structure have beenfollowed during the growth of a batch culture over 24 days,covering the lag phase, the phase of exponential growth, andthe stationary phase to a condition where the cells show evidenceof senescence. During the lag phase there is a massive synthesisof new cytoplasm and an increase in the number of mitochondriaand ribosomes. By the point of transition to the phase of exponentialgrowth many of the ribosomes are either attached to the ER membranesor are organized in spherical or spiral clusters. Multivesicularbodies are frequently observed. The development of the cellplate can be followed in some detail at this stage. As the rateof cell division decreases and cell enlargement begins the cytoplasmcomes to constitute a thin lining layer with fewer ribosomes,less prominent ER membranes and apparently fewer mitochondria.At this time starch begins to form and the frequency of lipid(or protein) bodies and of membrane enclosed crystals increases.During the stationary phase, which begins at about the 15thday of culture, the old cell walls show characteristic changesand are frequently ruptured. Intra-cytoplasmic vacuoles appearand then with the continuation of culture disappear as the cytoplasmiclayer approaches its minimum thickness. Nuclei show invaginationsand these often contain characteristic ‘aged’ mitochondria.  相似文献   

13.
Membrane-embedded β-barrel proteins are found in the outer membranes (OM) of Gram-negative bacteria, mitochondria and chloroplasts. In eukaryotic cells, precursors of these proteins are synthesized in the cytosol and have to be sorted to their corresponding organelle. Currently, the signal that ensures their specific targeting to either mitochondria or chloroplasts is ill-defined. To address this issue, we studied targeting of the chloroplast β-barrel proteins Oep37 and Oep24. We found that both proteins can be integrated in vitro into isolated plant mitochondria. Furthermore, upon their expression in yeast cells Oep37 and Oep24 were exclusively located in the mitochondrial OM. Oep37 partially complemented the growth phenotype of yeast cells lacking Porin, the general metabolite transporter of this membrane. Similarly to mitochondrial β-barrel proteins, Oep37 and Oep24 expressed in yeast cells were assembled into the mitochondrial OM in a pathway dependent on the TOM and TOB complexes. Taken together, this study demonstrates that the central mitochondrial components that mediate the import of yeast β-barrel proteins can deal with precursors of chloroplast β-barrel proteins. This implies that the mitochondrial import machinery does not recognize signals that are unique to mitochondrial β-barrel proteins. Our results further suggest that dedicated targeting factors had to evolve in plant cells to prevent mis-sorting of chloroplast β-barrel proteins to mitochondria.  相似文献   

14.
It is shown that the 12-hour treatment of cell with actinomycin D (AMD) in the concentration of 0.05 microgram/ml disturbs a correlation between the morphological cycle of mitochondria and phases of the mitotic cell cycle which is characteristic of intact cells. An increase in the total number of mitochondria independent of phase is observed in all the cells in comparison with intact cells. At the same time a decrease in the amount of branched organellae and appearance of giant mitochondria are discovered. All mitochondria are in the condense form. These changes, perhaps, are a result of the inhibition of the rRNA synthesis in the nucleus and of the protein synthesis in the cell found with it by AMD. The possibility of the immediate interaction of AMD with membrane components of the cell, which induces changes in the ion concentrations and peroxidation of the membrane lipids is not excluded.  相似文献   

15.
Fine details of the sequential morphological events occurring during transition of microconidia (spores less than 5 micrometer in diameter) to the yeastlike phase of Histoplasma capsulatum as seen in ultrathin section are described and illustrated by electron micrographs. Masses of microconidia were obtained when the fungas was grown on a garden soil extract medium. Spores were incubated under in vitro environmental conditions conducive for phase transition (an enriched medium at 37 degrees C). Within 48 h of incubation, the microconidia either germinated to give rise to a short mycelium or the germ tube process became a yeast mother cell without further extension. The wall of the yeast mother cell was thin and smooth, and its cytoplasmic content was ultrastructurally complex, consisting of numerous lipid bodies, vacuoles, glycogen-like deposits, and membrane systems. Within 96 h, the mother cell underwent multipolar budding to form simultaneously linear hyphal and/or ovate yeastlike daughter cells. During the transition, new cell wall materials of the germ tube, the mother cell, and yeastlike daughter cells arose by blastic action from the innermost layer(s) of the wall of the precursor form. Lomasome-like vesicles were often seen in association with areas of new cell wall formation. After organellar migration into and septation of the daughter cells, the yeast mother cell's cytoplasmic content underwent marked degenerative changes.  相似文献   

16.
In this study we investigated the effects of exogenous and endogenous oxidative stress on mitochondrial membrane permeability transition in yeast cells. E. magnusii yeast was used in the study as it is the only yeast strain possessing a natural high-capacity Са2+ transport system. The key reactive oxygen species (ROS) detoxifying enzymes in the yeast cells - catalases (CATs) and superoxide dismutases (SODs) - were fully characterized. At least five isoforms of SODs and only one isoform of CATs were found in the E. magnusii mitochondria. The assessment of the main properties of mitochondrial non-specific permeability under physiological conditions such as dynamics of the membrane potential (?Ψ) and swelling in mitochondria showed that under physiological conditions classical inhibitors of CATs (ATZ - 3-amino-1, 2, 4-triazole) and of SODs (DDC - diethyldithiocarbamate) caused irreversible decline in ?Ψ in the yeast mitochondria. This decline was accelerated in the presence of 500 μM Са2+. The combined action of the inhibitors (ATZ + DDC) promoted moderate swelling in the isotonic medium, which was confirmed by transmission electron microscopy. Mitochondrial swelling in the cells exposed to antioxidant system inhibitors was accompanied by typical signs of early apoptosis, namely by chromatin margination and condensation, vacuolization of the cytosol, and damage of the plasma membrane. Here we showed, at both cellular and mitochondrial levels, that the deregulation of oxidant-scavenging enzymes directly leads to the opening of the mPTP, followed by induction of apoptotic markers in the whole yeast cells. Our studies are the first to clarify the highly contradictory data in the literature on mPTP in yeast mitochondria.  相似文献   

17.
Mitochondrial fusion is a poorly characterized process which has mainly been studied in yeast and Drosophila but is thought to occur in all eukaryotes. Until now, there was only indirect evidence to support such a process in mammalian cells. In this study, using a cell fusion system, we found that mitochondrial fusion occurs rapidly in mammalian cells and is completed in less than 24 h. We report that the fusion of mitochondria requires an intact mitochondrial inner membrane potential but is independent of a functional cytoskeleton.  相似文献   

18.
We previously reported that paclitaxel acted directly on mitochondria isolated from human neuroblastoma SK-N-SH cells. Here, we demonstrate that the direct mitochondrial effect of paclitaxel observed in vitro is relevant in intact SK-N-SH cells. After a 2 h incubation with 1 microM paclitaxel, the mitochondria were less condensed. Paclitaxel (1 microM, 1-4 h) also induced a 20% increase in respiration rate and a caspase-independent production of reactive oxygen species by mitochondria. The paclitaxel-induced release of cytochrome c was detected only after 24 h of incubation, was caspase-independent and permeability transition pore-dependent. Thus, paclitaxel targets mitochondria upstream of caspase activation, early during the apoptotic process in intact human neuroblastoma cells.  相似文献   

19.
淹水对玉米叶片细胞超微结构的影响   总被引:13,自引:0,他引:13  
对淹水过程中玉米(Zea mays L.)叶片细胞超微结构的变化进行连续观察。淹水2h后,液泡膜发生明显内陷。淹水6h后,液泡膜内陷加剧,呈极度松弛状态;叶发体被膜局部向外突出一个由单层膜包裹的泡状结构。淹水12h后,液泡膜局部破裂;叶绿体被膜破坏加剧,成为一松弛的单膜结构,同时,基质类囊体出现空泡化。淹水18h后,叶绿体的破坏进一步加剧:被膜完全消失,基质类囊体开始消化;同时,线粒体膜和核膜也开  相似文献   

20.
BACKGROUND INFORMATION: Partial hepatectomy (70%) induces cell proliferation until the original mass of the liver is restored. In the first 24 h after partial hepatectomy, drastic changes in the metabolism of the remaining liver have been shown to occur. To evaluate changes in hepatocyte ultrastructure within the hepatic acinus during the liver regenerative process, we investigated, by light and electron microscopy observations on specimens taken 0 h, 24 h and 96 h after partial hepatectomy, the hepatocyte structure and ultrastructure in the periportal and pericentral area of the hepatic acinus, with a particular emphasis on mitochondria ultrastructure. Moreover, some biochemical events that could affect the mitochondria ultrastructure and function were investigated. RESULTS: We found that, 24 h after partial hepatectomy, mitochondria with altered ultrastructure were preferentially localized in the periportal area. Periportal hepatocytes showed also an increase in the number of peroxisomes, free ribosomes, lysosomes and autophagosomes. Altered mitochondria showed swelling, an ultrastructural index of increased membrane permeability, a reduction in the number of cristae, and a rarefied, often vacuoled, matrix. Consistently, an increase in the mitochondrial oxidized/reduced glutathione ratio was found as well as calcium release from mitochondria in a manner inhibited by cyclosporin A. Interestingly, light and electron microscopy analysis showed that the hepatocytes in the periportal area were the cells with the major structural attributes to proliferate. At 96 h after partial hepatectomy, the preferential zonation of altered mitochondria was lost and the normal mitochondrial membrane permeability properties were restored. CONCLUSIONS: We suggest that 24 h after partial hepatectomy, a preferential zonation of altered mitochondria in the periportal hepatocytes could be involved in the changes of metabolic and functional heterogeneity of the hepatocytes within the hepatic acinus during the regenerative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号