首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red beet ( Beta vulgaris L., cv. Detroit Dark Red) plasma membrane ATPase solubilized from a deoxycholate-extracted plasma membrane fraction with Zwittergent 3–14 was reconstituted into liposomes. Detergent removal and reconstitution was carried out by column chromatography on Sephadex G-200 followed by centrifugation at 100 000 g for I h. Prior to reconstitution, optimal activity in the solubilized preparation was observed when dormant red beet tissue was used in the extraction/solubilization procedure. Following reconstitution into liposomes, ATP-dependent proton transport could be demonstrated by measuring the quenching of acridine orange fluorescence. Proton transport and ATPase activity in the reconstituted enzyme preparation were inhibited by orthovandate but stimulated by KNO3. This stimulation most likely results from a reduction in the membrane potential generated during electrogenic proton transport by the reconstituted ATPase. The ATPase activity of the reconstituted ATPase was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was specific for ATP, insensitive to ouabain and azide but inhibited by N;N-dicyclohexylcarbodiimide and diethylstilbestrol. Stimulation of ATP hydrolytic activity occurred in the sequence: K+ Rb+ Na+ Cs+ Li+ and the kinetics of K+ stimulation of ATPase activity followed non-Michaelis-Menten kinetics as observed for both the membrane-bound and solubilized forms of the enzyme. Reconstitution of the plasma membrane ATPase from red beet allowed a substantial purification of the enzyme and resulted in the enrichment of a 100 kDa polypeptide representing the ATPase catalytic subunit.  相似文献   

2.
The effect of Mg2+, Na+, K+, ouabain and pH on ATPase activity of purified membrane fractions enriched in plasmalemma fragments from Hordeum vulgare L. (glycophyte) and Halocnemum strobilaceum L. (halophyte) was studied. Membrane ATPases from both plants were synergistically activated by K+ and Na+ in the presence of Mg2+. The maximum activity of the enzymes were observed at the ratio Na/K = 2–3. Ouabain (10-4 M) almost completely eliminated the (Na++ K+)-stimulated component of the ATPase activity. The Na, K, Mg-ATPase of Hordeum had a single pH optimum (pH 8), but that of the Halocnemum had two optima(pH 6 and 8). It appears that similar enzymes operate in the cells of both plants studied. The higher Na, K, Mg-ATPase activity of the halophyte compared to that of the glycophyte suggests the involvement of the enzyme in the extrusion of Na+ from the cytoplasm of cells of both plants.  相似文献   

3.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

4.
Characteristics of membrane-associated ATPase from commercial Hawaiian varieties of sugarcane ( Saccharum spp. hybrids) were investigated in preparations from sugarcane cell suspension culture and from stalk tissues of the intact plant. In order to examine comparable preparations, protoplasts and vacuoles, in turn, were obtained from both sources. ATPase from preparations of crude protoplast membranes and tonoplast had a pH optimum of 6 to 6.5. The relative effectiveness of divalent cations in stimulating ATPase was Mg2+ > Mn2+≥ Co2+ > Ca2+≥ Zn2+. Enzyme activity was not stimulated by K+, nor by other monovalent cations. Protoplasts and vacuoles from both sources showed significant acid phosphatase activity. Acid phosphatase activity was inhibited by molybdate, but ATPase activity was unaffected. Membrane preparations from protoplasts contained inorganic pyrophosphatase, but enzyme activity was low or not present in tonoplast preparations. Cell suspension and stalk tissue preparations hydrolyzed a large number of nucleoside di- and triphosphates. The hydrolysis is most likely due to a series of enzymes rather than a single enzyme. ATPase from protoplast and tonoplast preparations was inhibited 30–50% by diethylstilbestrol and sodium ortho-vanadate and was unaffected by ionophores. This study illustrates the complexity of phosphohydrolase activities in membrane preparations from sugarcane. The study, however, also illustrates substantial similarity in the behavior of these enzymes, whether they are derived from the plant itself or from cell cultures originating from comparable tissues of the plant.  相似文献   

5.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   

6.
Coccolithophorids are marine unicellular algae characterized by their ability to carry out controlled, subcellular calcification. The biochemical and kinetic features of membrane-bound Ca2+-stimulated ATPases have been examined. Membranes and organelles from axenic cultures of Pleurochrysis sp. (CCMP299) were isolated by means of sucrose density centrifugation. High levels of Ca2+-stimulated ATPase were detected in chloroplasts, Golgi apparatus, plasma membrane, and coccolith vesicles. The sensitivity of the enzyme activity in the organelles and membranes was assessed with pharmacologic agents that are known to be specific for the several isoforms of Ca2+-stimulated ATPase. The Ca2+-stimulated ATPase activity in the Golgi and coccolith vesicle preparations was sensitive to nitrate, thiocyanate, and sodium azide and insensitive to vanadate, cyclopiazonic acid, and thapsigargin. ATP-dependent H+ movement, but not 45Ca2+ transport, across the coccolith vesicle was demonstrated. The Ca2+-stimulated ATPase in the plasma membrane preparation was sensitive to vanadate. ATP-dependent, vanadate-sensitive efflux of 45Ca2+ was demonstrated for microsomal material derived from gradient-isolated plasma membrane. Polypeptides from isolated Golgi and coccolith vesicle preparations cross-reacted to an antibody raised against a subunit of the oat root proton pump, whereas polypeptides from the chloroplast preparations did not cross-react. These findings show that a V-type Ca2+-stimulated ATPase is located on the coccolith vesicle membrane and a P-type Ca2+-stimulated ATPase is located on the plasma membrane.  相似文献   

7.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

8.
SYNOPSIS. The ATPase activity of isolated flagella was studied in Euglena gracilis strain Z in the presence of Mg++ or Ca++. With Mg++, the optimum activity was at pH 7 and with Ca++, at pH 9. The K m values were respectively 6.6 × 10−4 and 3.6 × 10−4. Activity was influenced also by temperature and ionic strength. Results with inhibitors of membrane ATPase suggest the presence of a specific contractile system in the flagella. Our results are compatible with a multicomponent enzymic system containing 2 active ATPases.  相似文献   

9.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

10.
This paper discusses the application of a particular two-phase partitioning system to the isolation of plasma membranes from heterogeneous starting material, differing in physiological age. Plasma membranes were isolated from hypocotyl segments of mung beans ( Vigna radiata L. Wilczek) on four successive days in order to examine the variation caused by ageing of the seedling. Additionally, the segments were cut at different positions of the hypocotyl to measure variation caused by position-related ageing. To assess purity and degree of contamination of the plasma membrane-enriched preparations, a series of membrane enzyme markers were screened for all isolated fractions. Glucan synthetase II activities were enriched in the plasma membrane fractions, but enrichment and recovery became less pronounced with increasing age. Plasma membrane ATPase activity affected by VO43-, Ca2+ and K+ was similar in all segments throughout the time-course of the experiment (4 days). However, control ATPase activity varied with segment origin: the physiologically oldest segments showed only 75% activity compared to the youngest ones. Km and Vmax values indicated a smaller proportion of active enzyme but higher substrate affinity as the age of the segments increased. Contamination by intracellular membranes was minimal and unrelated to tissue age.  相似文献   

11.
Plasma membrane vesicles were isolated from the roots of 7-day-old rice plants ( Oryza sativa L. cv. Bahía) by utilizing an aqueous polymer two-phase system with 6.2%:6.2% (w/w) Dextran T500 and polyethylene glycol 3350 (PEG) at pH 7.6. Plasmalemma vesicles of high purity were obtained as indicated by the vanadate-sensitive K+, Mg2+-ATPase activity that was 18 times higher in the upper (PEG-rich) phase than in the lower (Dextran-rich) phase and by specific staining with sodium silicotungstate. Two peaks of ATPase activity were found. One showed a pH optimum at 6.0 in the presence of 150 m M KCl and 3 m M ATP with apparent Km (ATP) and Vmax of 0.75 m M and 79 μmol (mg protein)−1 h−1, respectively. With 50 m M KCl and 7 m M ATP a pH optimum of 6.5, an apparent Km (ATP) of 6.3 m M and Vmax of 159 μmol (mg protein)−1 h−1 were determined. Both activities were specific for ATP, unspecific for monovalent cations, sensitive to sodium vanadate and Ca2+ but insensitive to azide and nitrate.  相似文献   

12.
The distribution of divalent cation stimulated ATPase activity in relation to the distribution of other enzyme activities was studied for membrane fractions from wheat roots ( Tritium aestivum L . cv. Svenno). A homogenate from dark grown plants was fractionated by differential centrifugation at 1000 g , 10,000 g , 30,000 g and 60,000 g (1, 10, 30 and 60 KP fractions), followed by partition in an aqueous polymer two-phase system, using polyethylene glycol 4000/dextran T500 concentrations of 5.7/5.7, 5.9/5.9, 6.1/6.1, 6.3/6.3 and 6.5/6.5% (w/w). The 30 KP fraction was also separated by counter-current distribution id a 6.3/6.3% two-phase system. Protein and activities of Ca2+, Mg2+, and Mn2+ stimulated ATPases. cytochrome oxidase, light induced absorbance change (LIAC) related to cyt b reductions, inosine diphosphatase and NADH dependent antimycin A insensitive cytochrome c reductase were measured.
The partition of ATPase activities stimulated by Ca2+, Mg2+ or Mn2+ was similar at all polymer concentrations tested, indicating: a low cation specificity of the dominating ATPases. The distribution of ATPases. agreed with different marker enzymes in different centrifuge fractions. Divalent cation stimulated ATPases were evidently related to several of the organelles. In the different fractions the distribution of ATPase activity should then follow that of the marker enzyme of the dominant organelle. From studies with different polymer concentrations the 6.3/6.3-system was selected for further separation of the membranes in the 30 KP fraction by counter-current distribution. By this method one fraction was obtained, which probably consisted of plasmalemma and was free from mitochondrial material. Indications for plasmalemma in this fraction were a) similar partition as protoplasts and b) high LIAC activity.  相似文献   

13.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

14.
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5–1.0 mM AlK(SO4)2) inhibits yeast–hypha transition. Both vanadate-sensitive H+ transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H+ pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H+ efflux in solid medium. The present results suggest that alterations in the plasma membrane H+ transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H+-ATPase as a key factor of this process.  相似文献   

15.
The goal of this study was to test the hypothesis that the plasma membrane-bound ATPase activity is influenced by the redox poise of the cytoplasm. Purified plasma membrane vesicles from leaves of Elodea canadensis Michx. and E. nuttallii (Planch.) St. John were isolated using an aqueous polymer two-phase batch procedure. The distribution of marker enzyme activities confirmed the plasma membrane origin of the vesicles. The vesicles exhibited NADH-ferricyanide reductase activity, indicating the presence of a redox chain in the plasma membrane. The K+, Mg2+-ATPase activity associated with these vesicles was inhibited by the sulfhydryl reagents N-ethylmaleimide and glutathione (GSSG). Furthermore the activity was inhibited by NAD+. This inhibition by NAD+ was relieved by increasing the NADH/NAD+ ratio. The possibility that the ATPase activity is regulated by the cytoplasmic NAD(P)H/ NAD(P)+ ratio is discussed, as well as the role of a plasma membrane-bound redox chain.  相似文献   

16.
A purified plasmalemma preparation from roots of Plantago major L. ssp. pleiosperma (Pilger) was obtained by the two-phase partitioning method, using 6.5% (w/w) of Dextran T-500 and polyethylene glycol 3350, respectively. The distribution of murker enzymes proved the purity of the plasmalemma fraction. The ATPase activity was characterized by determining its sensitivity to anions, cations and inhibitors. The Mg2+-dependent ATPase activity peaked at pH 7.25, K+-stimulation at pH 6.75, and the Cl -stimulation both at pH 6.75 and 7.5 (all in the presence of 3 m M MgSO4). The plasmalemma preparations hydrolyzed preferentially ATP (in the presence of Mg2+), although they were less specific for ATP at pH 7.5 than at pH 6.75. The Cl - stimulated ATPase is probably associated with and located on the plasmalemma. The question if the Cl -stimulated activity is due to an ATPase distinct from the classical K+-stimulated ATPase is considered.  相似文献   

17.
Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+-dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+-ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast.  相似文献   

18.
Abstract. An investigation has been made of methods for isolating membrane vesicles from corn ( Zea mays L.) roots active in calcium transport and K+-stimulated ATPase. Pretreating and grinding the roots at room temperature with EGTA and fusicoccin increases basal ATPase activity. Improvement in Ca2+ uptake requires isolation of a scaled vesicle fraction by the method of Sze(1980). Sorbitol is superior to sucrose as an osmoticant. The pH optimum for Ca2+ uptake is 7.5. whereas that for associated ATPase activity is 6.5. Calmodulin strongly stimulates Ca2+ uptake in a process little affected by uncouplers and ATPase inhibitors, but blocked by chlorpromazine. Fusicoccin gives less stimulation of Ca2+ uptake which is sensitive to uncouplers, and is dependent upon isolation with fusicoccin present. It appears that the sealed vesicle fraction may possess two Ca2+ transport systems: a calmodulin-activated Ca2+-transporting ATPase, and a Ca2+/H+ antiport coupled through the protonmotive force to a fusicoccin-stimulated H+-ATPase.  相似文献   

19.
There is an increasing awareness of the possibilities of mineral nutrition as regulator of growth substance action and vice versa. The present paper focuses on the effects of mineral nutrition and benzyladenine at the level of the plasma membrane. Seedlings of wheat ( Triticum aestivum L. cv. Drabant) and juvenile plants of Plantago major L. ssp. pleiosperma (Pilger) were grown hydroponically at different mineral levels with or without benzyladenine. Purified plasmalemma preparations from roots of wheat and P. major ssp. pleiosperma were obtained by the two phase partitioning method, using 6.5% (w/w) of each of Dextran T-500 and polyethylene glycol 3350. The Mg2+ and (Mg2++ K+) dependent ATPase activities of the root plasmalemma in both species and the (Mg2++ Cl) one in P. major ssp. pleiosperma increased with increasing mineral levels, but the ionic strength did not influence the substrate specificity, the sensitivity to inhibitors or the pH optima.
The addition of 10−8 M benzyladenine to a nutrient solution increased the ATPase activities. The pH optima and the sensitivity to several inhibitors were not affected by benzyladenine, but the substrate specificity for ATP decreased, except for the K+ stimulation. In conclusion, benzyladenine mimics the effects of a higher mineral level than actually applied. Data from this and previous experiments indicate that benzyladenine exerts its effects by increasing the endogenous cytokinin concentrations and by modulating membrane components.  相似文献   

20.
Plasma membranes from corn roots (Zea mays L.) were isolated by aqueous two-phase partitioning. A fraction enriched in a vanadate-sensitive ATPase showed characteristics of a plasma membrane ATPase. The sidedness of these vesicles was 89% right-side-out, as evaluated by the ATPase latency. A NADH-ferricyanide reductase was associated with these plasma membrane vesicles. The rate of ferricyanide reduction was 1.3 μmol · min−1·mg−1 protein and was strongly enhanced by the addition of lysophosphatidylcholine (LPC). The effect of this detergent on membrane solubilization and reductase activity was particularly studied. This type of detergent treatment revealed two pH optima (7.0 and 5.0) for the reductase activity, which exhibited biphasic kinetics in the absence or presence of the detergent. These data suggest that two or more reductases could be involved. In addition, membrane vesicle solubilization and determination of ATPase and reductase latency were simultanously studied. From these experiments, it is postulated that the reductase, which exhibits an optimum pH at 7.0 and is slightly stimulated by LPC, could be located on the external side of the plasmalemma. In contrast, the reductase at pH 5.0 strongly stimulated by the detergent treatment, is probably located on the internal side of the membrane, such as the catalytic site of ATPase. Finally, a possible direct action of LPC on the enzymes, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号