首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
We present the results of simulations of a CCl4 monolayer adsorbed on a graphite surface. The CCl4 molecule was represented either by a shapeless superatom or by its atomic sites. The simulations were carried out over a large range of temperatures, from 20 K up to 340 K. We address the following problems: (1) the influence of molecular shape on the structure and stability of phases (particularly at low temperatures), and (2) the influence of the graphite corrugation on layer stability and mechanism of phase transitions. In particular, we discuss the possibility and conditions of the appearance of hexatic phase in the system. Figure Temperature dependence of Φ6 order parameter for CCl4 monolayer adsorbed onsmooth and corrugated surfaces, in the spherical Lennard Jones (LJ) approximation.For comparison, the order parameter calculated for MacDonald’s five-site potential is also presented  相似文献   

3.
Kubien DS  Sage RF 《Oecologia》2003,137(3):330-337
C4 plants are rare in cool climates, an ecological pattern attributable to their poor photosynthetic performance at low temperatures relative to C3 species. However, some C4 species are able to persist at high latitudes and high elevations, possibly due to the characteristics of the particular microsites they inhabit in these otherwise unfavourable environments. One such species is Muhlenbergia glomerata, which occurs above 60°N in Canada and is found in the atypical C4 habitat of boreal fens. In this study, we evaluate how microsite features affect the success of M. glomerata in boreal fens. We surveyed 19 populations across northern Ontario during the summers of 1999 and 2000. The ground coverage by woody vegetation was the most important parameter affecting the presence or absence of M. glomerata. Woody plants covered over 50% of the ground area in plots where M. glomerata is absent, but less than 20% where it is present. The minimum light intensity threshold for the presence of the C4 species was about 32% of full-sunlight at plant height. Surprisingly, in boreal fens M. glomerata was largely restricted to the wetter moss hollows, rather than occurring on the dry hummocks where its greater water use efficiency might have been advantageous. Woody species dominated the hummocks, but were uncommon in the hollows. In these cool northern climates M. glomerata apparently persists because sufficient periods of temperatures favourable to C4 photosynthesis occur, but this persistence likely requires some factor that suppresses the woody vegetation.  相似文献   

4.
5.
In Escherichia coli, the F1FO ATP synthase b subunits house a conserved arginine in the tether domain at position 36 where the subunit emerges from the membrane. Previous experiments showed that substitution of isoleucine or glutamate result in a loss of enzyme activity. Double mutants have been constructed in an attempt to achieve an intragenic suppressor of the b arg36→ile and the b arg36→glu mutations. The b arg36→ile mutation could not be suppressed. In contrast, the phenotypic defect resulting from the b arg36→glu mutation was largely suppressed in the b arg36→glu,glu39→arg double mutant. E. coli expressing the b arg36→glu,glu39→arg subunit grew well on succinate-based medium. F1FO ATP synthase complexes were more efficiently assembled and ATP driven proton pumping activity was improved. The evidence suggests that efficient coupling in F1FO ATP synthase is dependent upon a basic amino acid located at the base of the peripheral stalk.  相似文献   

6.
7.
A siderophore of the bacterial fish pathogen, Vibrio salmonicida, was isolated from low-iron culture supernatant and structurally characterized as bisucaberin by FTICR- and FAB-MS, NMR and GC-MS analysis of the hydrolysis products. Although the cyclic dihydroxamate bisucaberin has previously been isolated from a marine bacterium, Alteromonas haloplanktis, its involvement in cold-water vibriosis of Atlantic salmon (Salmon salar) is novel. Bisucaberin production in iron-limited media was highest at temperatures around and below 10 °C, correlating well with temperatures at which outbreaks of cold-water vibriosis occur. Due to the very high stability constant of K = 32.2, bisucaberin is a most efficient iron scavenger which may contribute to the virulence of V. salmonicida in Atlantic salmon.  相似文献   

8.
Summary The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I Kdd. An alternative proposal is that the hyperpolarization-activated current I f underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K+ depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I K1. In turn, this decay would be responsible for a “fake” reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba2+ was used to block the decay of I K1. In the presence of Ba2+ the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as −120 mV. In this regard, the distinct possibility needs to be considered that Ba2+ had blocked I Kdd (and not only I K1). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba2+. In the absence of Ba2+, I Kdd was present in the pacemaker potential range and reversed at E K. In the presence of Ba2+, I Kdd was blocked and I f appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I Kdd but not with I f. The fact that I f is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I Kdd (but not of I f) in Purkinje fibers.  相似文献   

9.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

10.
An effective transformation procedure for Kitasatospora setae was established based on transconjugation from Escherichia coli ET12567 (pUZ8002) using a C31-derived integration vector, pSET152, containing oriT and attP fragments. While no transconjugation was observed under the standard transconjugation conditions for Streptomyces species, sufficient transconjugation (>1×10-6) was achieved on ISP4 medium containing 30 mM MgCl2 using a 25- to 125-fold excess of E. coli donor cells. In addition, the sequence and location of the chromosomal integration site attB of K. setae was identified for the first time in genera of non-Streptomyces actinomycetes. K. setae contains a single C31 attB site. Similar to the case of Streptomyces species, the attB site of K. setae is present within an ORF encoding a pirin-homolog, but the K. setae-attB sequence deviates slightly from the consensus sequence of Streptomyces attB sequences.  相似文献   

11.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

12.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

13.
An open reading frame of the hyperthermophilic archaeon Aeropyrum pernix K1 APE2325, which composed of 474 bases, was cloned and expressed in Escherichia coli BL21 (DE3) Codon Plus-RIL. The recombinant protein was purified by Ni-chelation affinity chromatography. It showed a single band with a molecular mass of 18kDa in SDS-PAGE. The purified enzyme exhibited both phospholipase A(2) and esterase activities with the optimal catalytic temperature at 90 degrees C. The enzyme activity was Ca(2+)-independent. Kinetic analysis revealed its Km, k cat, and Vm for the p-nitrophenyl propionate substrate were 103microM, 39s(-1), and 249micromol/min/mg, respectively. The recombinant protein was thermostable and its half-life at 100 degrees C was about 1h.  相似文献   

14.
To obtain the basic data for evaluating the critical level of ozone (O3) to protect Japanese deciduous broad-leaved forest tree species, the growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen (N) loads were investigated. The seedlings were grown in potted andisol supplied with N as NH4NO3 solution at 0, 20 or 50 kg ha−1 year−1 and were exposed to charcoal-filtered air or O3 at 1.0, 1.5 and 2.0 times the ambient concentration for two growing seasons. The interactive effect of O3 and N load on the whole-plant dry mass of the seedlings at the end of the second growing season was significant. The O3-induced reduction in the whole-plant dry mass of the seedlings was greater in the relatively high N treatment than that in the low N treatment. This interactive effect was mainly due to the difference in the degree of O3-induced reduction in net photosynthesis among the N treatments. The degree of O3-induced reduction in N availability to photosynthesis was greater in the relatively high N treatment than that in the low N treatment. In conclusion, the sensitivity of growth and photosynthetic parameters of F. crenata seedlings to O3 become high with increasing amounts of N added to the soil. Therefore, N deposition from the atmosphere should be taken into account to evaluate the critical level of O3 to protect Japanese deciduous broad-leaved forest tree species.  相似文献   

15.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

16.
Marine yeast strain 1, isolated from the surface of a marine alga, was found to secrete a large amount of inulinase into the medium. This marine yeast was identified as a strain of Pichia guilliermondii according to the results of routine yeast identification and molecular methods. The crude inulinase produced by this marine yeast worked optimally at pH 6.0 and 60°C. The optimal medium for inulinase production was seawater containing 4.0% (w/v) inulin and 0.5% (w/v) yeast extract, while the optimal cultivation conditions for inulinase production were pH 8.0, 28°C and 170 rpm. Under the optimal conditions, over 60 U ml−1 of inulinase activity was produced within 48 h of fermentation in shake flasks. A large amount of monosaccharides and a trace amount of oligosaccharides were detected after the hydrolysis, indicating that the crude inulinase had a high exoinulinase activity.  相似文献   

17.
This study of ATP and ADP binding to noncatalytic sites of membrane-bound CF1 (ATP synthase) revealed two noncatalytic sites with different specificities and affinities for nucleotides. One of these is characterized by a high affinity and specificity to ADP (Kd=2.6+/-0.3 microM). However, a certain increase in ADP apparent dissociation constant at high ATP/ADP ratio in the medium allows a possibility that ATP binds to this site as well. The other site displays high specificity to ATP. When the ADP-binding site is vacant, it shows a comparatively low affinity for ATP, which greatly increases with increasing ADP concentration accompanied by filling of the ADP-binding site. The reported specificities of these two sites are independent of thylakoid membrane energization, since both in the dark and in the light the ratios of ATP/ADP tightly bound to the noncatalytic sites were very close. The difference in noncatalytic site affinity for ATP and ADP is shown to depend on the amount of delta subunit in a particular sample. Thylakoid membrane ATP synthase, with stoichiometric content of delta-subunit (one delta-subunit per CF1 molecule), showed the maximal difference in ADP and ATP affinities for the noncatalytic sites. For CF1, with substoichiometric delta subunit values, this difference was less, and after delta subunit removal it decreased still more.  相似文献   

18.
Schwartze W  Roos W 《Planta》2008,229(1):183-191
In cultured cells of California poppy (Eschscholzia californica), lysophosphatidylcholine (LPC) triggers a signal path that finally induces alkaloid biosynthesis. LPC is transiently generated by elicitor-activated phospholipase A(2) of the plasma membrane. Externally added LPC is rapidly acylated by a membrane-bound enzyme that shows the highest specific activity in the purified plasma membrane. The fatty acid incorporated into the sn-2 position of LPC is preferentially linoleic (18:2), which is the most abundant acyl component in the PC species of Eschscholzia cells, but a minor component of the pool of free fatty acids. The fatty acid at the sn-1 position of LPC is less important for substrate specificity. The capacity of LPC acylation by intact cells or isolated plasma membranes by far exceeds the rate of LPC generation by activated phospholipase A(2) and is not limited by the availability of acyl donors. Metabolites other than phosphatidylcholine (PC) were not significantly produced from labeled LPC within 20 min, indicating that lysophospholipases are not significantly contributing to the short-time metabolism of LPC. It is concluded that reacylation to PC is the dominating process in the detoxication of LPC and ensures the transient character of its steady state concentrations, even at maximum phospholipase A(2) activities.  相似文献   

19.
Seventy different actinomycete isolates were evaluated for their ability to produce keratinase using a keratin-salt agar medium containing ball-milled feather as substrate. A novel feather-degrading isolate obtained from marine sediment produced the highest keratinolytic activity when cultured on broth containing whole feather as a primary source of carbon, nitrogen and energy. Based on phenotypic characterization and analysis of 16S rDNA sequencing the isolate was identified as a Streptomyces sp. MS-2. Maximum keratinase activity (11.2 U/mg protein) was achieved when cells were grown on mineral salt liquid medium containing 1% whole chicken feather adjusted to pH 8 and incubated at 35°C for 72 h at 150 rpm. Reduction of disulphide bridges was also detected, increasing with incubation time. Feather degradation led to an increase in free amino acids such as alanine, leucine, valine and isoleucine. Moreover, methionine and phenylalanine were also produced as microbial metabolites.  相似文献   

20.
Amplified fragment length polymorphism (AFLP) analysis was used to investigate the genetic diversity in isolates of the ectomycorrhizal fungus Cenococcum geophilum from serpentine and non-serpentine soils in Portugal. A high degree of genetic diversity was found among C. geophilum isolates; AFLP fingerprints showed that all the isolates were genetically distinct. We also assessed the in vitro Ni sensitivity in three serpentine isolates and one non-serpentine isolate. Only the non-serpentine isolate was significantly affected by the addition of Ni to the growth medium. At 30 microg g(-1) Ni, radial growth rate and biomass accumulation decreased to 73.3 and 71.6% of control, respectively, a highly significant inhibitory effect. Nickel at this concentration had no significant inhibitory effect on serpentine isolates, and so the fitness of serpentine isolates, as evaluated by radial growth rate and biomass yield, is likely unaffected by Ni in the field. In all isolates, the Ni concentration in the mycelia increased with increasing Ni concentration in the growth medium, but two profiles of Ni accumulation were identified. One serpentine isolate showed a linear trend of Ni accumulation. At the highest Ni exposure, the concentration of Ni in the mycelium of this isolate was in the hyperaccumulation range for Ni as defined for higher plants. In the remaining isolates, Ni accumulation was less pronounced and seems to approach a plateau at 30 microg g(-1) Ni. Because two profiles of Ni accumulation emerged among our Ni-insensitive serpentine isolates, this result suggests that different Ni detoxification pathways may be operating. The non-serpentine isolate whose growth was significantly affected by Ni was separated from the other isolates in the genetic analysis, suggesting a genetic basis for the Ni-sensitivity trait. This hypothesis is further supported by the fact that all isolates were maintained on medium without added Ni to avoid carry-over effects. However, because AFLP analysis failed to distinguish between serpentine and non-serpentine isolates, we cannot conclude that Ni insensitivity among our serpentine isolates is due to evolutionary adaptation. Screening a larger number of isolates, from different geographical origins and environments, should clarify the relationships between genetic diversity, morphology, and physiology in this important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号