首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Selective DNA bending by a variety of bZIP proteins.   总被引:19,自引:4,他引:15       下载免费PDF全文
We have investigated DNA bending by bZIP family proteins that can bind to the AP-1 site. DNA bending is widespread, although not universal, among members of this family. Different bZIP protein dimers induced distinct DNA bends. The DNA bend angles ranged from virtually 0 to greater than 40 degrees as measured by phasing analysis and were oriented toward both the major and the minor grooves at the center of the AP-1 site. The DNA bends induced by the various heterodimeric complexes suggested that each component of the complex induced an independent DNA bend as previously shown for Fos and Jun. The Fos-related proteins Fra1 and Fra2 bent DNA in the same orientation as Fos but induced smaller DNA bend angles. ATF2 also bent DNA toward the minor groove in heterodimers formed with Fos, Fra2, and Jun. CREB and ATF1, which favor binding to the CRE site, did not induce significant DNA bending. Zta, which is a divergent member of the bZIP family, bent DNA toward the major groove. A variety of DNA structures can therefore be induced at the AP-1 site through combinatorial interactions between different bZIP family proteins. This diversity of DNA structures may contribute to regulatory specificity among the plethora of proteins that can bind to the AP-1 site.  相似文献   

3.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

4.
New insights into the structure of An tracts and B'-B' bends in DNA   总被引:4,自引:0,他引:4  
Energy calculations suggest that the currently available NOE distance constraints for An tracts in DNA are incapable of distinguishing between structures with a narrowed minor groove arising from a large propeller twist with a small inclination or from a small propeller twist with a large negative inclination. Furthermore, analysis of published data, together with energy estimations, strongly argue against bifurcated hydrogen bonding between A and T residues being the cause of the anomalous structural properties of An tracts. A conformational analysis of the B'-B' junction has been performed in which a single variable base pair has been inserted between two regions of B' structure. We have calculated low-energy structures for AnGAn,AnCAn,AnTAn,AnCTn, and TnCAn duplexes, where the An and Tn tracts were fixed in the anomalous B' conformation. Upon optimization, all these structures were found to contain a pronounced roll-like bending into the major groove at the site of the insertion. The important factors in the formation of these B'-B' bends are the destruction of the B' conformation and the concomitant widening of the minor groove at the junction region in order to reduce minor groove interstrand base clashes and improve interstrand stacking energy. If the B' conformation has strong negative inclination, the improved intrastrand stacking energy also contributes to the bending. In calculations of duplexes with An and Tn tracts in the B conformation instead of B', the bending disappears.  相似文献   

5.
Sims GE  Kim SH 《Nucleic acids research》2003,31(19):5607-5616
A global conformational space of 6253 dinucleoside monophosphate (DMP) units consisting of RNA and DNA (free and protein/drug-bound) was 'mapped' using high resolution crystal structures cataloged in the Nucleic Acid Database (NDB). The torsion angles of each DMP were clustered in a reduced three-dimensional space using a classical multi-dimensional scaling method. The mapping of the conformational space reveals nine primary clusters which distinguish among the common A-, B- and Z-forms and their various substates, plus five secondary clusters for kinked or bent structures. Conformational relationships and possible transitional pathways among the substates are also examined using the conformational states of DNA and RNA bound with proteins or drugs as potential pathway intermediates.  相似文献   

6.
Normal vectors perpendicular to individual base pairs are a powerful tool for studying the bending behavior of B-DNA, both in the form of normal vector plots and in matrices that list angles between vectors for all possible base pair combinations. A new analysis program, FREEHELIX, has been written for this purpose, and applied to 86 examples of sequence-specific protein/DNA complexes whose coordinates are on deposit in the Nucleic Acid Data Base. Bends in this sample of 86 structures almost invariably follow from roll angles between adjacent base pairs; tilt makes no net contribution. Roll in a direction compressing the broad major groove is much more common than that which compresses the minor groove. Three distinct types of B-DNA bending are observed, each with a different molecular origin: (1) Localized kinking is produced by large roll at single steps or at two steps separated by one turn of helix. (2) Smooth, planar curvature is produced by positive and negative roll angles spaced a half-turn apart, with random side-to-side zigzag roll at intermediate points, rather than a tilt contribution that might have been expected theoretically. (3) Three-dimensional writhe results from significant roll angles at a continuous series of steps. Writhe need not change the overall direction of helix axis, if it is continued indefinitely or for an integral number of helical turns. A-DNA itself can be formally considered as possessing uniform, continuous writhe that yields no net helix bending. Smooth curvature is the most intricate deformation of the three, and is least common. Writhe is the simplest deformation and is most common; indeed, a low level of continuous writhe is the normal condition of an otherwise unbent B-DNA helix of general sequence. With one exception, every example of major kinking in this sample of 86 structures involves a pyrimidine–purine step: C–A/T–G, T–A, or C–G. Purine–purine steps, especially A–A, show the least tendency toward roll deformations. © 1998 John Wiley & Sons, Inc. Biopoly 44: 361–403, 1997  相似文献   

7.
Introduction of a T-A or pyrimidine-purine step into a straight and rigid A-tract can cause a positive roll deformation that kinks the DNA helix at that step. In CCTTTAAAGG, the central T-A step has an 8.6 degrees bend toward the major groove. We report the structural analysis of CCTTTAAAGG and a comparison with 25 other representative crystal structures from the NDB containing at least four consecutive A or T bases. On average, more local bending occurs at the disruptive T-A step (8.21 degrees ) than at an A-T step (5.71 degrees ). In addition, A-tracts containing an A-T step are more bent than are pure A-tracts, and hence A-A and A-T steps are not equivalent. All T-A steps examined exhibit positive roll, bending towards the major groove, while A-T steps display negative roll and bend slightly towards the minor groove. This illustrates how inherent negative and positive roll are, respectively, at A-T and T-A steps within A-tracts. T-A steps are more deformable, showing larger and more variable deformations of minor groove width, rise, cup, twist, and buckle. Standard deviations of twist, rise, and cup for T-A steps are 6.66 degrees, 0.55 A, and 15.90 degrees, versus 2.28 degrees, 0.21 A, and 2.99 degrees for A-T steps. Packing constraints determine which local values of these helical parameters an individual T-A step will adopt. For instance, with CCTTTAAAGG and three isomorphous structures, CGATTAATCG, CGATATATCG, and CGATCGATCG, crystal packing forces lead to a series of correlated changes: widened minor groove, large slide, low twist, and large rise. The difference in helical parameters between A-T steps lying within A-tracts, versus A-T steps within alternating AT sequences, demonstrates the importance of neighboring steps on the conformation of a given dinucleotide step.  相似文献   

8.
Abstract

Bending in double-helical B-DNA apparently occurs only by rolling adjacent base pairs over one another along their long axes. The lifting apart of ends that would be required by tilt or wedge angle contributions is too costly in free energy and does not occur. Roll angles at base steps can be positive (compression of major groove) or negative (compression of minor groove); with the former somewhat easier.

Individual steps may advance or oppose the overall direction of bend, or make lateral excursions, but the result of this series of “random roll” steps is the production of a net bending in the helix axis. Because the natural roll points for bending in a given plane occur every 5 base pairs, one would expect that double-helical DNA wrapped around a nucleosome core would exhibit bends with the same periodicity. Alternate bends might be particularly acute where the major groove faced the nucleosome core and was compressed against it.

The “annealed kinking” model proposed by Fratini et al. (J. Biol. Chem. 257, 14686 (1982) was suggested from the observation that a major bend at a natural roll point is flanked by decreasing roll angles at the steps to either side, as though local strain was being minimized by somewhat blurring the bend out rather than keeping it localized. The random walk model suggested in this paper would describe this as a decreased roll angle as the helix step rotates toward a direction perpendicular to the overall bend. Bending of DNA is seen to be a more stochastic process than had been suspected. Detailed analysis of every helix step reveals both side excursions and backward or retrograde motion, as in any random walk situation. Yet these isolated steps counteract one another, to leave behind a residuum of overall bending in a specific direction.  相似文献   

9.
10.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

11.
Analysis of available B-DNA type oligomeric crystal structures as well as protein-bound DNA fragments (solved using data with resolution <2.6 A) indicates that in both data sets, a majority of the (3'-Ade) H2..O2(3'-Thy/Cyt) distances in AA.TT and GA.TC dinucleotide steps, are considerably shorter than their values in a uniform fibre model, and are smaller than their optimum separation distance. Since the electropositive C2-H2 group of adenine is in close proximity of the electronegative keto oxygen atoms of both pyrimidine bases in the antiparallel strand of the double-helical DNA structures, it suggests the possibility of intra-base-pair as well as cross-strand C-H..O hydrogen bonds in the minor groove. The C2-H2..O2 hydrogen bonds within the A.T base-pairs could be a natural consequence of Watson-Crick pairing. However, the close cross-strand interactions between the bases at the 3'-ends of the AA.TT and GA.TC steps arise due to the local sequence-dependent geometry of these steps. While the base-pair propeller twist in these steps is comparable to the fibre model, some of the other local parameters such as base-pair opening angle and inter-base-pair slide show coordinated changes, leading to these shorter C2-H2..O2 distances. Hence, in addition to the well-known minor groove hydration, it appears that favourable C2-H2..O2 cross-strand interactions may play a role in imparting a characteristic geometry to AA.TT and GA.TC steps, as well as An.Tn and GAn.TnC tracts, which leads to a narrow minor groove in these regions.  相似文献   

12.
Bovine pancreatic DNase I shows a strong preference for double-stranded substrates and cleaves DNA with strongly varying cutting rates suggesting that the enzyme recognises sequence-dependent structural variations of the DNA double helix. The complicated cleavage pattern indicates that several local as well as global helix parameters influences the cutting frequency of DNase I at a given bond. The high resolution crystal structures of two DNase I-DNA complexes showed that the enzyme binds tightly in the minor groove, and to the sugar-phosphate backbones of both strands, and thereby induces a widening of the minor groove and a bending towards the major grooves. In agreement with biochemical data this suggests that flexibility and minor groove geometry are major parameters determining the cutting rate of DNase I. Experimental observations showing that the sequence environmental of a dinucleotide step strongly affects its cleavage efficiency can be rationalized by that fact that six base pair are in contact with the enzyme. Mutational analysis based on the structural results has identified critical residues for DNA binding and cleavage and has lead to a proposal for the catalytic mechanism.  相似文献   

13.
The energies of intra- and inter-strand stacking interactions in model d(GpC) and d(CpG) two-base-pair steps were estimated by MP2/aug-cc-pVDZ single point calculations corrected for basis superposition errors. The stacked two-nucleobase pairs were constructed using experimental values of base pair and base step parameters taken from Nucleic Acid Database (). Three distinct polymorphic forms were analysed, namely A-, B- and Z-DNA. The applied methodology enables statistical analysis of structural and energetic diversities. The structural relationships between polymorphic forms are quite complex and depend on the sequence of pairs. The variability of parameters such as shift and tilt is almost the same irrespective of the polymorphic form and sequence of steps analysed. In contrast, shift and twist distributions easily discriminate all three polymorphic forms of DNA. Interestingly, despite significant structural diversities, the energies of the most frequent energy ranges are comparable irrespective of the polymorphic form and base sequence. There was observed compensation of inter- and intra-strand interactions, especially for d(GpC) and d(CpG) steps found in A- and B-DNA. Thus, among many other roles, these pairs act as a kind of energetic buffer, balancing the double helix. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The 1 A resolution X-ray crystal structures of Mg(2+) and Ca(2+) salts of the B-DNA decamers CCAACGTTGG and CCAGCGCTGG reveal sequence-specific binding of Mg(2+) and Ca(2+) to the major and minor grooves of DNA, as well as non-specific binding to backbone phosphate oxygen atoms. Minor groove binding involves H-bond interactions between cross-strand DNA base atoms of adjacent base-pairs and the cations' water ligands. In the major groove the cations' water ligands can interact through H-bonds with O and N atoms from either one base or adjacent bases, and in addition the softer Ca(2+) can form polar covalent bonds bridging adjacent N7 and O6 atoms at GG bases. For reasons outlined earlier, localized monovalent cations are neither expected nor found.Ultra-high atomic resolution gives an unprecedented view of hydration in both grooves of DNA, permits an analysis of individual anisotropic displacement parameters, and reveals up to 22 divalent cations per DNA duplex. Each DNA helix is quite anisotropic, and alternate conformations, with motion in the direction of opening and closing the minor groove, are observed for the sugar-phosphate backbone. Taking into consideration the variability of experimental parameters and crystal packing environments among these four helices, and 24 other Mg(2+) and Ca(2+) bound B-DNA structures, we conclude that sequence-specific and strand-specific binding of Mg(2+) and Ca(2+) to the major groove causes DNA bending by base-roll compression towards the major groove, while sequence-specific binding of Mg(2+) and Ca(2+) in the minor groove has a negligible effect on helix curvature. The minor groove opens and closes to accommodate Mg(2+) and Ca(2+) without the necessity for significant bending of the overall helix.The program Shelxdna was written to facilitate refinement and analysis of X-ray crystal structures by Shelxl-97 and to plot and analyze one or more Curves and Freehelix output files.  相似文献   

15.
基于蛋白质-DNA复合物晶体结构的DNA结构动力学特性研究   总被引:1,自引:0,他引:1  
依据最新NDB数据库中蛋白质-DNA复合物晶体结构数据,考虑DNA结构的序列依赖特性,对10个二联体和36个约化的四联体计算了DNA动力学结构模型中的关键参数——力常数矩阵,矩阵中的非对角项反映了结构参数间的关联。利用改进的DNA结构动力学模型,可以方便地计算给定序列的结构动力学特性。  相似文献   

16.
It has been noticed that converged conformations of B-DNA oligomers obtained in MD calculations often have very small atom position rmsd values from the canonical B-DNA and all helical parameters close to the standard values, but their minor grooves tend to be somewhat narrower. This apparent bias disappears, however, when C5' rather than phosphorus atoms are used for measuring the groove width. At the origin of this effect is the specific orientation of phosphate groups in the canonical B-DNA model which maximizes their separation across the minor groove. When measured by C5' traces, minor groove profiles of experimental structures available in the Nucleic Acids Database show much less tendency to narrow below the canonical width. Correlation analysis reveals a high degree of correspondence in shapes of minor grooves of calculated and experimental single-crystal structures of B-DNA oligomers.  相似文献   

17.
The catabolite activator protein (CAP) bends DNA in the CAP-DNA complex, typically introducing a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A1A2A3T4G5T6G7A8T9C10T11 -3' ("primary kink"). In previous work, we showed that CAP recognizes the nucleotide immediately 5' to the primary-kink site, T6, through an "indirect-readout" mechanism involving sequence effects on energetics of primary-kink formation. Here, to understand further this example of indirect readout, we have determined crystal structures of CAP-DNA complexes containing each possible nucleotide at position 6. The structures show that CAP can introduce a DNA kink at the primary-kink site with any nucleotide at position 6. The DNA kink is sharp with the consensus pyrimidine-purine step T6G7 and the non-consensus pyrimidine-purine step C6G7 (roll angles of approximately 42 degrees, twist angles of approximately 16 degrees ), but is much less sharp with the non-consensus purine-purine steps A6G7 and G6G7 (roll angles of approximately 20 degrees, twist angles of approximately 17 degrees). We infer that CAP discriminates between consensus and non-consensus pyrimidine-purine steps at positions 6-7 solely based on differences in the energetics of DNA deformation, but that CAP discriminates between the consensus pyrimidine-purine step and non-consensus purine-purine steps at positions 6-7 both based on differences in the energetics of DNA deformation and based on qualitative differences in DNA deformation. The structures further show that CAP can achieve a similar, approximately 46 degrees per DNA half-site, overall DNA bend through a sharp DNA kink, a less sharp DNA kink, or a smooth DNA bend. Analysis of these and other crystal structures of CAP-DNA complexes indicates that there is a large, approximately 28 degrees per DNA half-site, out-of-plane component of CAP-induced DNA bending in structures not constrained by end-to-end DNA lattice interactions and that lattice contacts involving CAP tend to involve residues in or near biologically functional surfaces.  相似文献   

18.
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

19.
The SmaI and XmaI endonucleases are imperfect isoschizomers that recognize the sequence CCCGGG. SmaI cleaves between the internal CpG to produce blunt end scissions whereas XmaI cleaves between the external cytosines to produce a four base, five prime overhang. Each of the endonucleases forms stable, specific complexes with DNA in the absence of magnesium. Circular permutation analyses of the protein-DNA complexes revealed that each of the endonucleases induces bending of the DNA. Phase sensitive detection analyses verified the existence of the SmaI and XmaI induced bends. Furthermore, bending of the helix axis by the endonucleases appeared to be directed in opposite orientations. The orientation of the SmaI induced bend appeared to be towards the major groove and is reminiscent of the direction of the bend induced by EcoRV which similarly induces blunt end scissions. Conversely, XmaI appeared to bend the DNA towards the minor groove.  相似文献   

20.
Sox17 regulates endodermal lineage commitment and is thought to function antagonistically to the pluripotency determinant Sox2. To investigate the biochemical basis for the distinct functions of Sox2 and Sox17, we solved the crystal structure of the high mobility group domain of Sox17 bound to a DNA element derived from the Lama1 enhancer using crystals diffracting to 2.7 Å resolution. Sox17 targets the minor groove and bends the DNA by approximately 80°. The DNA architecture closely resembles the one seen for Sox2/DNA structures, suggesting that the degree of bending is conserved between both proteins and nucleotide substitutions have only marginal effects on the bending topology. Accordingly, affinities of Sox2 and Sox17 for the Lama1 element were found to be identical. However, when the Oct1 contact interface of Sox2 is compared with the corresponding region of Sox17, a significantly altered charge distribution is observed, suggesting differential co-factor recruitment that may explain their biological distinctiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号