首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to determine the effect of creatine (Cr) loading on the onset of neuromuscular fatigue by monitoring electromyographic fatigue curves from the vastus lateralis muscle using the physical working capacity at the fatigue threshold (PWC(FT)) test. Using a double-blind random design, 15 women athletes [mean age 19.0 +/- 2.0 (SD) yr] from the university crew team received a placebo (n = 8; 20 g glucose) or Cr (n = 7; 5 g Cr monohydrate + 20 g glucose) four times per day for 5 consecutive days. Analysis of covariance was used to analyze the data (covaried for presupplementation PWC(FT) values). The adjusted mean postsupplementation PWC(FT) value for the Cr group (mean = 186 W) was significantly (P < 0.05) higher than that of the placebo group (mean = 155 W). These findings suggest that Cr loading may delay the onset of neuromuscular fatigue.  相似文献   

2.
The purpose of this study was to compare fatigue-related measures of central and peripheral mechanisms between young and elderly subjects for a task performed with elbow flexor muscles. Ten young and nine elderly subjects performed a sustained submaximal fatigue task at 35% of their maximum voluntary contraction torque. Measures of neuromuscular function, reflecting changes in neuromuscular propagation, voluntary activation, excitation-contraction-relaxation processes, and metabolite buildup, were taken before, during, and after the fatigue task. The main results were the absence of neuromuscular propagation failure in either young or elderly subjects, the presence of central fatigue at the end of the fatigue task in 7 of 9 elderly but only 3 of 10 young subjects, and lesser changes in twitch torque contraction-relaxation variables and electromyographic median frequency in elderly compared with young subjects. The lesser fatigue-related changes in twitch contraction speed and median frequency in elderly compared with young subjects could reflect the increase in type I-to-type II fiber area reported with old age. The presence of significant central fatigue can apparently minimize some of the potential differences present in peripheral fatigue sites.  相似文献   

3.
Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducers were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterize neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electrifield exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.  相似文献   

4.
The purpose of this study was to examine the effects of 28 days of beta-alanine (b-Ala) and creatine monohydrate (CrM) supplementation on the onset of neuromuscular fatigue by using the physical working capacity at neuromuscular fatigue threshold (PWC(FT)) test in untrained men. Fifty-one men (mean age +/- SD = 24.5 +/- 5.3 years) volunteered to participate in this 28-day, double-blind, placebo-controlled study and were randomly assigned to 1 of 4 groups: placebo (PLA; 34 g dextrose; n = 13), CrM (5.25 g CrM plus 34 g dextrose; n = 12), b-Ala (1.6 g b-Ala plus 34 g of dextrose; n = 12), or b-Ala plus CrM (CrBA; 5.25 g CrM plus 1.6 g b-Ala plus 34 g dextrose; n = 14). The supplement was ingested 4 times per day for 6 consecutive days, then twice per day for 22 days before posttesting. Before and after the supplementation, subjects performed a continuous incremental cycle ergometry test while a surface electromyographic signal was recorded from the vastus lateralis muscle to determine PWC(FT). The adjusted mean posttest PWC(FT) values (covaried for pretest PWC(FT) values) for the b-Ala and CrBA groups were greater than those for the PLA group (p < or = 0.05). However, there were no differences between the CrM vs. PLA, CrBA vs. b-Ala, CrM vs. b-Ala, or CrM vs. CrBA groups (p > 0.05). These findings suggested that b-Ala supplementation may delay the onset of neuromuscular fatigue. Furthermore, there appeared to be no additive or unique effects of CrM vs. b-Ala alone on PWC(FT).  相似文献   

5.
The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique) and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R2≤0.82) of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R2≤0.73) for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.  相似文献   

6.
心理疲劳指由于长期从事某项工作而出现的心理耗竭感,以及对任务的不能胜任感,并伴有情绪,认知,学习记忆力等方面的功能减退。长航人员作为一种特殊群体,其面对和承担的问题和压力都更加严峻,其心理疲劳的发病更具针对性,严重影响了我国海军整体实力。本文对长航人员心理疲劳从概念,表现等方面深入讨论,并进一步分析心理疲劳发病机制与GABA的相关性。心理疲劳的发生可能和中枢神经系统内抑制作用密切相关,而GABA作为脑内的经典抑制性神经递质在整个反应过程中起到关键和标志性作用。然而该结论还有待进一步分子生物学实验研究的证明。  相似文献   

7.
The experiments on cats have shown that liposomes containing ferrocolloid and neuromuscular blocking agents (diadonium or dipyronium) cause selective muscle relaxation in the animal limb placed into the magnetic field, compared to the control limb kept outside the field. This effect was not related to the action of the magnetic field per se on neuromuscular transmission or the potency of neuromuscular blocking agents not contained in liposomes, but was induced by the accumulation of magnet-controlled liposomes in the target limb. The use of magnet-controlled liposomes for diadonium and dipyronium transport to one of the animal limbs decreases their unfavourable effect on respiratory muscle function.  相似文献   

8.
Prolonged skeletal muscle disuse, during space flights and on Earth, produces distinct adaptive changes in the neuromuscular system of human subjects. There is a significant decline in muscle mass and strength, exercise capacity, fatigue resistance, integrated EMG (IEMG) output and time-dependent alterations in the behavior of Hoffman (H) and deep tendon reflexes. The objective of this study was to examine the changes in excitability of segmental motoneuronal network and its influence upon gastrocnemius-soleus (G-S) function in healthy male and female subjects, who underwent either 6 degrees head-down bedrest (HDB) or unilateral cast-immobilization (CIM) for a period of 30 days.  相似文献   

9.
Ultramarathon runners are exposed to a high number of impact shocks and to severe neuromuscular fatigue. Runners may manage mechanical stress and muscle fatigue by changing their running kinematics. Our purposes were to study (i) the effects of a 110-km mountain ultramarathon (MUM) on tibial shock acceleration and lower limb kinematics, and (ii) whether kinematic changes are modulated according to the severity of neuromuscular fatigue. Twenty-three runners participated in the study. Pre- and post-MUM, neuromuscular tests were performed to assess knee extensor (KE) and plantar flexor (PF) central and peripheral fatigue, and a treadmill running bouts was completed during which step frequency, peak acceleration, median frequency and impact frequency content were measured from tibial acceleration, as well as foot-to-treadmill, tibia-to-treadmill, and ankle flexion angles at initial contact, and ankle range of motion using video analysis. Large neuromuscular fatigue, including peripheral changes and deficits in voluntary activation, was observed in KE and PF. MVC decrements of ~35% for KE and of ~28% for PF were noted. Among biomechanical variables, step frequency increased by ~2.7% and the ankle range of motion decreased by ~4.1% post-MUM. Runners adopting a non rearfoot strike pre-MUM adopted a less plantarflexed foot strike pattern post-MUM while those adopting a rearfoot strike pre-MUM tended to adopt a less dorsiflexed foot strike pattern post-MUM. Positive correlations were observed between percent changes in peripheral PF fatigue and the ankle range of motion. Peripheral PF fatigue was also significantly correlated to both percent changes in step frequency and the ankle angle at contact. This study suggests that in a fatigued state, ultratrail runners use compensatory/protective adjustments leading to a flatter foot landing and this is done in a fatigue dose-dependent manner. This strategy may aim at minimizing the overall load applied to the musculoskeletal system, including impact shock and muscle stretch.  相似文献   

10.
Neuronal nitric oxide synthases (nNOS) are Ca2+/calmodulin-activated enzymes that synthesize the gaseous messenger nitric oxide (NO). nNOSμ and the recently described nNOSβ, both spliced nNOS isoforms, are important enzymatic sources of NO in skeletal muscle, a tissue long considered to be a paradigmatic system for studying NO-dependent redox signaling. nNOS is indispensable for skeletal muscle integrity and contractile performance, and deregulation of nNOSμ signaling is a common pathogenic feature of many neuromuscular diseases. Recent evidence suggests that both nNOSμ and nNOSβ regulate skeletal muscle size, strength, and fatigue resistance, making them important players in exercise performance. nNOSμ acts as an activity sensor and appears to assist skeletal muscle adaptation to new functional demands, particularly those of endurance exercise. Prolonged inactivity leads to nNOS-mediated muscle atrophy through a FoxO-dependent pathway. nNOS also plays a role in modulating exercise performance in neuromuscular disease. In the mdx mouse model of Duchenne muscular dystrophy, defective nNOS signaling is thought to restrict contractile capacity of working muscle in two ways: loss of sarcolemmal nNOSμ causes excessive ischemic damage while residual cytosolic nNOSμ contributes to hypernitrosylation of the ryanodine receptor, causing pathogenic Ca2+ leak. This defect in Ca2+ handling promotes muscle damage, weakness, and fatigue. This review addresses these recent advances in the understanding of nNOS-dependent redox regulation of skeletal muscle function and exercise performance under physiological and neuromuscular disease conditions.  相似文献   

11.
The purpose of this study was to assess differences in fatigue-related changes in variables related to structures within the neuromuscular system, between the dominant and non-dominant elbow flexor muscles of right-handed individuals. Two experimental sessions were performed on the right arm and one on the left arm. For each session, maximum voluntary torque, level of voluntary activation, M-wave amplitude, twitch/train or twitch/doublet torque ratio and EMG median frequency were obtained before and up to 20 min after a sustained maximum isometric fatigue task. Our main results were: 1) reproducible fatigue-induced changes in all variables of interest between the two sessions performed with the right arm, 2) significantly greater failure in voluntary activation and neuromuscular propagation with sustained activity for the non-dominant compared with dominant side, and 3) no effect of dominance on MVC torque, endurance time, and fatigue-induced changes in EMG median frequency and elicited torques. These results suggest that the preferential use of elbow flexor muscles with the dominant arm leads to more fatigue resistance in certain structures/mechanisms of the neuromuscular system, but not in others.  相似文献   

12.
The purpose of this study was to estimate the differences in neuromuscular fatigue among prolonged pedalling exercises performed at different pedalling rates at a given exercise intensity. The integrated electromyogram (iEMG) slope defined by the changes in iEMG as a function of time during exercise was adopted as the measurement for estimating neuromuscular fatigue. The results of this experiment showed that the relationship between pedalling rate and the means of the iEMG slopes for eight subjects was a quadratic curve and the mean value at 70 rpm [1.56 (SD 0.65) V·min–1] was significantly smaller (P < 0.01) than that at 50 and 60 rpm [2.25 (SD 0.54), and 2.22 (SD 0.68), respectively]. On the other hand, the mean value of oxygen consumption obtained simultaneously showed a tendency to increase linearly with the increase in pedalling rate, and the values at 70 and 80 rpm were significantly higher than those at 40 and 50 rpm. In conclusion, it was demonstrated that the degree of neuromuscular fatigue estimated by the iEMG changes for five periods of prolonged pedalling exercise at a given exercise intensity was different among the different pedalling rates, and that the pedalling rate at which minimal neuromuscular fatigue was obtained was not coincident with the rate at which the minimal oxygen consumption was obtained, but was coincident with the rate which most subjects preferred. These findings would suggest that the reason why most people prefer a relative higher pedalling rate, even though higher oxygen consumption is required, is closely related to the development of neuromuscular fatigue in the working muscles.  相似文献   

13.

Background  

Postpoliomyelitis Syndrome (PPS) is a complex of late onset neuromuscular symptoms with new or increased muscle weakness and muscle fatigability as key symptoms. Main clinical complaints are severe fatigue, deterioration in functional abilities and health related quality of life. Rehabilitation management is the mainstay of treatment. Two different therapeutic interventions may be prescribed (1) exercise therapy or (2) cognitive behavioural therapy (CBT). However, the evidence on the effectiveness of both interventions is limited. The primary aim of the FACTS-2-PPS trial is to study the efficacy of exercise therapy and CBT for reducing fatigue and improving activities and quality of life in patients with PPS. Additionally, the working mechanisms, patients' and therapists' expectations of and experiences with both interventions and cost-effectiveness will be evaluated.  相似文献   

14.
Electromyogram (EMG) analyses (surface, intramuscular and evoked potentials) in studies of muscle function have attracted increasing attention during recent years and have been applied to assess muscle endurance capacity, anaerobic and lactate thresholds, muscle biomechanics, motor learning, neuromuscular relaxation, optimal walking and pedalling speeds, muscle soreness, neuromuscular diseases, motor unit (MU) activities (MU recruitment and rate coding), and skeletal muscle fatigue. This paper deals with the use of EMG analyses employed in the area of applied physiology and is divided into three sections: surface EMG analyses; intramuscular EMG analyses; and evoked potential analyses.  相似文献   

15.
We compared the contributions of impaired neuromuscular transmission (transmission fatigue) and impaired muscle contractility (contractile fatigue) to fatigue of the isolated rat diaphragm. To make this comparison, we measured the differences in active tension elicited by direct muscle stimulation and by indirect (phrenic nerve) stimulation before and after fatigue induced by indirect supramaximal stimulation at varying frequencies and durations. Transmission fatigue was observed after all experimental protocols. Although significant contractile fatigue was not demonstrated after brief periods of low-frequency stimulation (6 min, 15 Hz, 25% duty cycle), it was present after longer or higher frequency stimulation. We repeated the direct stimulation in the presence of neuromuscular blockade with 6 microM d-tubocurarine to demonstrate that a reduced response to stimulation of intramuscular branches of the phrenic nerve during direct stimulation was not responsible for the apparent contractile fatigue. Since we found significant decreases in the response to direct stimulation even after neuromuscular blockade, we could verify the presence of contractile fatigue. We conclude that both contractile and transmission fatigue can occur in the isolated rat diaphragm and that transmission fatigue is a much more important factor after brief periods of fatiguing contractions.  相似文献   

16.
Skeletal muscle activity is invariably associated with a decline in force-generating capacity (fatigue). The build-up of metabolic by-products such as intracellular H+ and inorganic phosphate (Pi) has been shown to be one of the potential mechanisms of muscle fatigue. The use of phosphorus magnetic resonance spectroscopy is a repeatable and useful tool to study the effect of pH and Pi on force development. When maximal exercise is preceded by submaximal exercise to reduce the starting muscle pH and increase Pi, the degree of muscle fatigue correlates more strongly with H2PO4- than pH or Pi alone. However, other studies in humans have found that H2PO4- does not always correlate well with fatigue. The use of ramp exercise protocols allow repeatable and sensitive measurement of changes in muscle metabolism in response to endurance training. Chronic electrical stimulation in dogs and endurance training in humans results in reduced pH and Pi changes at the same exercise intensities. This means that the effect of pH and Pi in depressing force development is reduced, which could partially explain the increased fatigue resistance seen following endurance training.  相似文献   

17.
The development of fatigue during the transmission of excitation through the frog neuromuscular synapse was studied. The blocking of neuromuscular transmission during fatigue was shown to be based on a reduction in the quantum composition of the mediator. Liberation of the mediator is disturbed not by a decrease in the reserves of acetylcholine in motor nerve endings, but by a decrease in the probability of liberation of each quantum.S. V. Kurashov State Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 78–85, January–February, 1977.  相似文献   

18.
A study on the effects of a constant magnetic field on the components of the protein structures in human blood was conducted by the methods of electron spectroscopy, optic aggregometry, and electrophoresis on an agarose gel. It was found that protein structures of different localizations experience the primary effect of a constant magnetic field. As a result, the total charge, form, and linear dimensions of the molecules change, as well as the rotation frequency of the components around valence bonds; this leads to changes in the spatial structures of the blood protein components. It was suggested as a working hypothesis that an increase in the intensity of oxidation processes under the effect of a magnetic field and, consequently, an increase in the negative activities of oxygen metabolites underlie these changes.  相似文献   

19.
Electromyographic models to assess muscle fatigue   总被引:1,自引:0,他引:1  
Muscle fatigue is a common experience in daily life. Many authors have defined it as the incapacity to maintain the required or expected force, and therefore, force, power and torque recordings have been used as direct measurements of muscle fatigue. In addition, the measurement of these variables combined with the measurement of surface electromyography (sEMG) recordings (which can be measured during all types of movements) during exercise may be useful to assess and understand muscle fatigue. Therefore, there is a need to develop muscle fatigue models that relate changes in sEMG variables with muscle fatigue. However, the main issue when using conventional sEMG variables to quantify fatigue is their poor association with direct measures of fatigue. Therefore, using different techniques, several authors have combined sets of sEMG parameters to assess muscle fatigue. The aim of this paper is to serve as a state-of-the-art summary of different sEMG models used to assess muscle fatigue. This paper provides an overview of linear and non-linear sEMG models for estimating muscle fatigue, their ability to assess power loss and their limitations due to neuromuscular changes after a training period.  相似文献   

20.
Muscle fatigue, which is defined as the decline in muscle performance during exercise, may occur at different sites along the pathway from the central nervous system through to the intramuscular contractile machinery. Historically, both impairment of neuromuscular transmission and peripheral alterations within the muscle have been proposed to be involved in the development of fatigue. However, according to the more recent studies, muscle energetics would have a key role in this process. Intramyoplasmic accumulation of inorganic phosphate (P(i)) and limitation in ATP availability are frequently proposed as the causative factors of fatigue development. Although attractive, these hypotheses have been elaborated on the basis of experimental results obtained in vitro and their physiological relevance has never been clearly demonstrated in vivo. In that context, non-invasive methods such as 31-phosphorus magnetic resonance spectroscopy ((31)P MRS) and electromyographic (EMG) recordings have been employed to understand both metabolic and electrical aspects of muscle fatigue under physiological condition. The main results of these studies are reviewed in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号