首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Neuron》2021,109(24):3902-3904
  相似文献   

2.
The year of 2013 marked the 50th anniversary of C de Duve''s coining of the term “autophagy” for the degradation process of cytoplasmic constituents in the lysosome/vacuole. This year we regretfully lost this great scientist, who contributed much during the early years of research to the field of autophagy. Soon after the discovery of lysosomes by de Duve, electron microscopy revealed autophagy as a means of delivering intracellular components to the lysosome. For a long time after the discovery of autophagy, studies failed to yield any significant advances at a molecular level in our understanding of this fundamental pathway of degradation. The first breakthrough was made in the early 1990s, as autophagy was discovered in yeast subjected to starvation by microscopic observation. Next, a genetic effort to address the poorly understood problem of autophagy led to the discovery of many autophagy-defective mutants. Subsequent identification of autophagy-related genes in yeast revealed unique sets of molecules involved in membrane dynamics during autophagy. ATG homologs were subsequently found in various organisms, indicating that the fundamental mechanism of autophagy is well conserved among eukaryotes. These findings brought revolutionary changes to research in this field. For instance, the last 10 years have seen remarkable progress in our understanding of autophagy, not only in terms of the molecular mechanisms of autophagy, but also with regard to its broad physiological roles and relevance to health and disease. Now our knowledge of autophagy is dramatically expanding day by day. Here, the historical landmarks underpinning the explosion of autophagy research are described with a particular focus on the contribution of yeast as a model organism.  相似文献   

3.
Summary Gerbils (Meriones unguiculatus) can specify the location of a goal by means of visual landmarks and will return to such a goal from different starting positions in the vicinity of the landmarks. To discover whether landmark-cues are used continuously during an approach to the goal, gerbils were trained to forage for sunflower seeds close to a single illuminated light-bulb on the floor of an arena. As they approached the bulb, it was switched off and another bulb in a variable position with respect to the first turned on. On 52 out of 71 trials the gerbils changed their trajectory (latency ca. 240 ms) to aim for the newly lit bulb (Fig. 1 A, B). On the remaining trials, gerbils maintained their original course towards the first bulb as though it were still lit and then paused after a longer delay before eventually changing direction (Fig. 1C). Thus, an approach to a beacon is usually under continuous visual control. This ensures that the gerbil will reach its goal correctly despite any inaccuracies in its initial computation of its approach.When switches were made between more complex arrays of landmarks, the gerbils' behaviour was less clear-cut. Possible reasons for this difference are suggested.  相似文献   

4.
5.
Landmarks are critical components of our internal representation of the environment, yet their specific properties are rarely studied, and little is known about how they are processed in the brain. Here we characterised a large set of landmarks along a range of features that included size, visual salience, navigational utility, and permanence. When human participants viewed images of these single landmarks during functional magnetic resonance imaging (fMRI), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) were both engaged by landmark features, but in different ways. PHC responded to a range of landmark attributes, while RSC was engaged by only the most permanent landmarks. Furthermore, when participants were divided into good and poor navigators, the latter were significantly less reliable at identifying the most permanent landmarks, and had reduced responses in RSC and anterodorsal thalamus when viewing such landmarks. The RSC has been widely implicated in navigation but its precise role remains uncertain. Our findings suggest that a primary function of the RSC may be to process the most stable features in an environment, and this could be a prerequisite for successful navigation.  相似文献   

6.
The period of territorial settlement is critical for territorial species, and the initial disputes to fix the boundaries can be energetically expensive. Territorial residents may be able to reduce defensive costs during settlement by selecting territories with landmarks at the sites of potential boundaries. We examined the effects of landmarks on defensive costs in a laboratory study of a cichlid fish, the blockhead, Steatocranus casuarius. In the landmark treatment, we placed a row of flat rocks across the centre of the aquaria; trials in the control treatment were identical but lacked landmarks. When landmarks were present, blockheads spent significantly less time in territorial defence, as they had fewer and shorter aggressive interactions with their neighbours. In addition, fights in landmark trials tended to be of lower intensity than fights in control trials: most fights in landmark trials included only low-level displays but most fights in control trials included physical contact. Both of these measures thus indicated that defensive costs were lowered by landmarks. In addition, in landmark trials typically both pairs of fish successfully established territories; in contrast, in control trials generally only one pair was able to establish a territory, with the other pair being evicted. The presence of landmarks appeared to make possible the division of the area available for settlement, with pairs establishing smaller territories than when there were no landmarks. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

7.
8.
Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle’s orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.  相似文献   

9.
Desert ants learn vibration and magnetic landmarks   总被引:1,自引:0,他引:1  
The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.  相似文献   

10.
11.
12.
Craniometric measurements from a three-dimensional (3-D) digitizing system were compared with those from sliding and spreading calipers. The 3-D system consisted of a 3-Space Digitizer, Macintosh Plus computer, and Unigraphics CAD/CAM system. Twenty-nine standard measurements were made and repeated on two normal and three deformed skulls. The percentage of difference was calculated for original versus repeat measures and caliper versus 3-D measures. For objective anatomic structures and fiducial points, there was less than 2 mm (maximum) of difference between 1) the original digitizer versus repeat 3-D measures and 2) caliper versus 3-D measures. This represented 2% or less measurement incongruence. There were no significant differences for these comparisons (p greater than 0.1), and all regressions were highly significant (P less than 0.001), with r2 greater than 0.999. 3-D measurements were made more easily and quickly than were caliper measurements, with no loss in precision. It is concluded that 3-D measurements are equivalent in quality to caliper measurements for craniometric studies, but are easier to obtain.  相似文献   

13.
The proximity of visual landmarks impacts reaching performance   总被引:3,自引:0,他引:3  
The control of goal-directed reaching movements is thought to rely upon egocentric visual information derived from the visuomotor networks of the dorsal visual pathway. However, recent research (Krigolson and Heath, 2004) suggests it is also possible to make allocentric comparisons between a visual background and a target object to facilitate reaching accuracy. Here we sought to determine if the effectiveness of these allocentric comparisons is reduced as distance between a visual background and a target object increases. To accomplish this, participants completed memory-guided reaching movements to targets presented in an otherwise empty visual background or positioned within a proximal, medial, or distal visual background. Our results indicated that the availability of a proximal or medial visual background reduced endpoint variability relative to reaches made without a visual background. Interestingly, we found that endpoint variability was not reduced when participants reached to targets framed within a distal visual background. Such findings suggest that allocentric visual information is used to facilitate reaching performance; however, the fidelity by which such cues are used appears linked to the proximity of veridical target location. Importantly, these data also suggest that information from both the dorsal and ventral visual streams can be integrated to facilitate the online control of reaching movements.  相似文献   

14.
Here we describe and evaluate a new method for quantifying long bone curvature using geometric morphometric and semi‐landmark analysis of the human femur. The technique is compared with traditional ways of measuring subtense and point of maximum curvature using either coordinate calipers or projection onto graph paper. Of the traditional methods the graph paper method is more reliable than using coordinate calipers. Measurement error is consistently lower for measuring point of maximum curvature than for measuring subtense. The results warrant caution when comparing data collected by the different traditional methods. Landmark data collection proves reliable and has a low measurement error. However, measurement error increases with the number of semi‐landmarks included in the analysis of curvature. Measurements of subtense can be estimated more reliably using 3D landmarks along the curve than using traditional techniques. We use equidistant semi‐landmarks to quantify the curve because sliding the semi‐landmarks masks the curvature signal. Principal components analysis of these equidistant semi‐landmarks provides the added benefit of describing the shape of the curve. These results are promising for functional and forensic analysis of long bone curvature in modern human populations and in the fossil record. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
We investigated spatial blocking among landmarks in an open-field foraging task in rats. In Phase 1, rats were presented with A+ trials during which landmark (LM) A signaled the location of hidden food. In Phase 2, rats were given AX+ trials in which LM X served as a redundant spatial cue to the location of food. Additionally, BY+ trials were given as a within-subjects overshadowing-control procedure. At test, rats received nonreinforced presentations of LM X and LM Y on separate trials. Rats took longer to find the training goal location in the presence of LM X than of LM Y, thereby demonstrating that spatial control by LM X was blocked by prior learning with LM A. This constitutes the first evidence in rats for spatial blocking of one proximal landmark by another—approximating a conventional blocking design.  相似文献   

16.
Visual landmarks and route following in desert ants   总被引:1,自引:1,他引:0  
Summary Little is known about the way in which animals far from home use familiar landmarks to guide their homeward path. Desert ants, Cataglyphis spp., which forage individually over long distances are beginning to provide some answers. We find that ants running 30 m from a feeding place to their nest memorise the visual characteristics of prominent landmarks which lie close to their path. Although remembered visual features are used for identifying a landmark and for deciding whether to go to its left or right, they are not responsible for the detailed steering of an ant's path. The form of the trajectory as an ant approaches and detours around a landmark seems to be controlled by the latter's immediate retinal size; the larger it is, the greater the ant's turning velocity away from the landmark.  相似文献   

17.
Anatomical landmarks are defined as biologically meaningful loci that can be unambiguously defined and repeatedly located with a high degree of accuracy and precision. The neurocranial surface is characteristically void of such loci. We define a new class of landmarks, termed fuzzy landmarks, that will allow us to represent the form of the neurocranium. A fuzzy landmark represents the position of a biological structure that is precisely delineated, but occupies an area that is larger than a single point in the observer's reference system. In this study, we present a test case in which the cranial bosses are evaluated as fuzzy landmarks. Five fuzzy landmarks (the cranial bosses) and three traditional landmarks were placed repeatedly by a single observer on three-dimensional (3D) computed tomography (CT) surface reconstructions of pediatric dry skulls and skulls of pediatric patients, and directly on four of the same dry skulls using a 3Space digitizer. Thirty landmark digitizing trials from CT scans show an average error of 1.15 mm local to each fuzzy landmark, while the average error for the last ten trials was 0.75 mm, suggesting a learning curve. Data collected with the 3Space digitizer was comparable. Measurement error of fuzzy landmarks is larger than that of traditional landmarks, but is acceptable, especially since fuzzy landmarks allow inclusion of areas that would otherwise go unsampled. The information obtained is valuable in growth studies, clinical evaluation, and volume measurements. Our method of fuzzy landmarking is not limited to cranial bosses, and can be applied to any other anatomical features with fuzzy boundaries. Am J Phys Anthropol 107:113–124, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Some psychophysics of the pigeon's use of landmarks   总被引:3,自引:0,他引:3  
1. Three pigeons (Columba livia) were trained to find hidden food in a sunken well (3.3 cm in diameter) at a constant place within an (160 cm x 160 cm) experimental box (Fig. 1). After learning the location, the animals were tested occasionally with the well and food absent. Landmarks in the experimental box might be transformed on such tests. 2. Changing the height or width of a nearby landmark had no systematic influence on the position of peak search. Translating a nearby landmark, however, led to a shift in peak search position. All three birds then searched most somewhere between the original goal location, as defined by the unmoved landmarks, and the goal location as defined by the shifted landmark. Within a limited range of landmark shift, the peak shift as a function of landmark shift is linear (Fig. 3). 3. To explain the data (Fig. 7), the pigeon records at the location of the goal the algebraic vectors from a number of landmarks to the goal. These vectors have both a direction and a distance component. When searching for the goal again in the experimental box, it computes independently for each landmark a navigation vector. This is arrived at by vector-adding the algebraic vector from the bird's current position to the landmark in question, supplied by perception, to the corresponding landmark-goal vector in its record. The pigeon moves in the direction and distance specified by a weighted average of the independently calculated navigation vectors. For positive vector weights, vector geometry guarantees that the bird would search somewhere between the original goal and the goal according to the shifted landmark. The extent to which it shifts toward the shifted goal reflects the vector weight given to the shifted landmark.  相似文献   

19.
This investigation determined relationships between coronal vertical alignment (CVA) and sagittal vertical alignment (SVA) variables calculated from radiographs and surface markers representing bony landmarks. Biplanar radiographs were taken on 28 subjects (standing) after 2 metallic surface markers were placed on the skin superficial to C7 and S2. The CVA-R and SVA-R were measured on the radiographs. Similar variables were calculated from the surface markers (CVA-P-R, SVA-P-R). Correlation between CVA-R and CVA-P-R was 0.894 (p<0.000), and between SVA-R and SVA-P-R was 0.946 (p<0.000). Results lead to three recommendations: (1) obtain surface marker data when radiographs are taken to establish relationships between the two sets of data, (2) take care in providing instructions to the subjects if measures are to be taken at different times, and (3) observe caution in interpreting results when simultaneous x-ray and surface marker data were not recorded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号