首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Alternative splicing of SV40 early pre-mRNA in vitro.   总被引:12,自引:4,他引:8       下载免费PDF全文
  相似文献   

3.
4.
X Y Fu  H Ge    J L Manley 《The EMBO journal》1988,7(3):809-817
We have studied the role in pre-mRNA splicing of the nucleotide sequence preceding the SV40 early region 3' splice site. Somewhat surprisingly, neither the pyrimidine at the highly conserved -3 position, nor the polypyrimidine stretch that extends from -5 to -15, relative to the 3' splice site, were found to be required for efficient splicing. Mutations that delete this region or create polypurine insertions at position -2 had no significant effects on the efficiency of SV40 early pre-mRNA splicing in vivo or in vitro. Interestingly, however, the pyrimidine content of this region had substantial effects on the alternative splicing pattern of this pre-mRNA in vivo. Mutations that increased the number of pyrimidine residues resulted in more efficient utilization of the large T antigen mRNA 5' splice site relative to the small t 5' splice site, while mutations that increased the purine content enhanced small t mRNA splicing. A possible molecular mechanism for these findings, as well as a model that proposes a role for the polypyrimidine stretch in alternative splicing, are discussed.  相似文献   

5.
6.
We found that simian virus 40 (SV40), in addition to the SV40 early proteins large T antigen (large T) and small antigen (small t), codes for a third early protein with a molecular weight of 17 kDa. This protein (17kT) is expressed from an alternatively spliced third SV40 early mRNA, using a splice donor site at position 4425 and a splice acceptor site at position 3679 of the SV40 genome. The 17kT protein consists of 135 amino acids. Of these, 131 correspond to the amino-terminus of large T, while the four carboxy-terminal amino acids are unique and encoded by a different reading frame. 17kT mRNA, and the corresponding protein, were found in all SV40 transformed cells analyzed, as well as in SV40 infected cells. Transfection of a cDNA expression vector encoding the 17kT protein into rat F111 fibroblasts induced phenotypic transformation of these cells. The expression of the transforming amino-terminal domain of large T as an independent 17kT protein might provide a means for individually regulating the various functions associated with this domain.  相似文献   

7.
Spliceosome-mediated RNA trans-splicing (SMaRT) has been used previously to reprogram mutant endogenous CFTR and factor VIII mRNAs in human epithelial cell and tissue models and knockout mice, respectively. Those studies used 3' exon replacement (3'ER); a process in which the distal portion of RNA is reprogrammed. Here, we also show that the 5' end of mRNA can be completely rewritten by 5'ER. For proof-of-concept, and to test whether 5'ER could generate functional CFTR, we generated a mutant minigene target containing CFTR exons 10-24 (deltaF508) and a mini-intron 10, and a pretrans-splicing molecule (targeted to intron 10) containing CFTR exons 1-10 (+F508), and tested these two constructs in 293T cells for anion efflux transport. Cells cotransfected with target and PTM showed a consistent increase in anion efflux, but there was no response in control cells that received PTM or target alone. Using a LacZ reporter system to accurately quantify trans-splicing efficiency, we tested several unique PTM designs. These studies provided two important findings as follows: (1) efficient trans-splicing can be achieved by binding the PTM to different locations in the target, and (2) relatively few changes in PTM design can have a profound impact on trans-splicing activity. Tethering the PTM close to the target 3' splice site (as opposed to the donor site) and inserting an intron in the PTM coding resulted in a 65-fold enhancement of LacZ activity. These studies demonstrate that (1) SMaRT can be used to reprogram the 5' end of mRNA, and (2) efficiency can be improved substantially.  相似文献   

8.
S Aho  V Tate    H Boedtker 《Nucleic acids research》1984,12(15):6117-6125
During the fine structural analysis of the 5' end of the 38 kb chicken pro alpha 2(I) collagen gene, we failed to locate an exon, only 11 bp in size, which had been predicted from the DNA sequence analysis of a cDNA clone complementary to the 5' end of the pro alpha 2(I) collagen mRNA (1). We know report the location of this 11 bp exon, exon 2, at the 5' end of a 180 bp Pst I fragment, 1900 bp 3' to exon 1 and 600 bp 5' to exon 3. Its sequence, ATGTGAGTGAG, is highly unusual in that it contains two overlapping consensus donor splice sequences. Moreover, it is flanked by two overlapping donor splice sequences but only one of the four splice sequences is actually spliced (1). The first half of intron 1 also has an unusual sequence: it is 68% GC, contains 88 CpG dinucleotides and 11 Hpa II sites. The second half is more like other intron sequences in the collagen gene with a GC content of 41%, 19 CpG, and no Hpa II sites. However it contains two sequences with 7 and 9 bp homology to the 14 bp SV40 enhancer core sequence. It is suggested that some part of intron 1 may be involved in regulation.  相似文献   

9.
10.
E May  J M Jeltsch    F Gannon 《Nucleic acids research》1981,9(16):4111-4128
It has been reported that SV40-transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) produce a super T antigen of 115,000 M. This super T antigen is entirely SV40 coded and is synthesized by translation of an elongated form of SV40 early mRNA (May, E., Kress, M. Daya-Grosjean, L., Monier, R. and May, P. (1981) J. Virol., 37, 24-35). The results reported here show that there is only one independent insertion of viral DNA in the cellular genome of subclone 7 cells. When DNA from subclone 7 cells was cleaved with Bam HI endonuclease two distinct SV40 sequence containing fragments were generated with sizes of 5 Kb and 10 Kb, respectively. Two recombinant cosmids were constructed by insertion of the 5 Kb and 10 Kb fragments, respectively, into cosmid pHC 79. Using restriction map analysis and nucleotide sequencing, we showed that the 5 Kb fragment actually contained the complete sequence of a gene encoding super T antigen. As compared to the normal SV40 early gene, the sequence of super T gene showed the following rearrangements: (i) The segment between nucleotides 4116 - 3544 was duplicated in a direct order and (ii) these two copies of 573 nucleotide sequence were separated by a 93 nucleotide tract which was a nearly perfect inverted repeat of the segment located between nucleotides 4868 and 4776 (nucleotide numbering used here = Weissmann number +17).  相似文献   

11.
A J Griffith  C Schmauss  J Craft 《Gene》1992,114(2):195-201
The cDNA and partial genomic nucleotide (nt) sequences were derived for the mouse Sm B polypeptide and compared to the cDNA and genomic sequences encoding human Sm B. The deduced amino acid (aa) sequences from the mouse and human genes are identical with the exception of a single conserved aa substitution, accounting for the ability of anti-Sm antibodies to recognize the Sm polypeptides from a broad range of species. The genomic sequence of mouse B gene is similar to the human B genomic locus that extends from exon 6 to exon 7. These loci include conservation of both 3' alternative splice sites and putative branch points required to process B and B' mRNAs in human cells. However, the nt sequence downstream from the putative distal 3' splice junction and single nt flanking the 3' splice site consensus sequence, differ between mouse and human B. This results in a murine mRNA with a different predicted secondary structure around the distal 3' splice site when compared to humans. Thus, secondary structural constraints in the mRNA or changes in the exon sequence might prevent recognition of this alternative splice site to form B' mRNA in murine tissues.  相似文献   

12.
13.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

14.
We examined the promoter activity of the 1.3-kb chicken beta-actin gene sequence located between the 5' flanking region and the proximal region of the second exon. This promoter region showed higher promoter activity than the simian virus 40 (SV40) early promoter or the Rous sarcoma virus (RSV) long terminal repeat (LTR) as assayed by transient lacZ gene expression in mouse L cells. Furthermore, replacement of the 3' splice sequence in this promoter by that derived from the rabbit beta-globin gene resulted in a approximately 2.5-fold enhancement in the synthesis of beta-galactosidase (beta Gal). Introduction of the SV40 origin of DNA replication (ori) into the vector carrying this hybrid promoter, which we designate the AG promoter, markedly enhanced the production of beta Gal in an SV40 T antigen-producing cell, BMT10. We have constructed a useful vector containing the strong AG promoter, several unique restriction sites, a SV40 polyadenylation signal and the SV40 ori for transient expression of cDNA in BMT10 or COS cells. We demonstrate the use of this vector for efficient production of interleukin-5 in BMT10 cells.  相似文献   

15.
16.
H Ge  P Zuo  J L Manley 《Cell》1991,66(2):373-382
We described previously the purification of a human protein, called alternative splicing factor (ASF), that can switch utilization of alternative 5' splice sites in an SV40 early pre-mRNA. We now report the isolation of a cDNA, designated ASF-1, that encodes this protein. ASF-1 consists of 248 amino acid residues, including an 80 residue RNA-binding domain at its N-terminus and a 50 residue C-terminal region that is 80% serine plus arginine. ASF-1 produced in E. coli can activate splicing in vitro and switch 5' splice-site utilization, establishing that the recombinant protein is sufficient to supply these activities. Analysis of additional cDNAs revealed that ASF pre-mRNA can itself be alternatively spliced, surprisingly, by utilization of a shared 5' splice site and two closely spaced 3' splice sites. Use of the upstream site results in a second mRNA (ASF-2) in which translation of the downstream exon occurs extensively in an alternative reading frame distinct from ASF-1.  相似文献   

17.
A small subclass of SV40 T antigen binds to the viral origin of replication   总被引:32,自引:0,他引:32  
A Scheller  L Covey  B Barnet  C Prives 《Cell》1982,29(2):375-383
We examined the affinities of SV40 large T antigen for unique viral DNA sequences by binding SV40 Bst NI DNA fragments in extracts of infected or transformed cells, and then immunoprecipitating the T antigen-DNA complex. The G fragment, which spans the viral origin of replication (ori) was quantitatively bound to T antigen. A T-antigen-specific monoclonal antibody (McI 7), which recognized only 5%-10% of the T antigen from infected or transformed cells, immunoprecipitated the majority of the ori-binding activity. This suggests that only a minor subclass of wild-type T antigen is active in binding to the origin. C6 cells contain a replication-defective mutant T antigen that when tested in the DNA-binding immunoassay, showed no affinity for the ori fragment. McI 7 not only failed to immunoprecipitate ori binding in C6 cells, but also did not detect any labeled C6 T antigen whatever. Thus McI 7 recognizes an immunologically distinct subset of wild-type 7 antigen that comprises the origin-binding form of the viral protein, which is absent in the C6 T antigen population. McI 122, which recognizes a 53 kilodalton host protein that complexes with T antigen, immunoprecipitated ori-binding activity from extracts of infected or transformed cells, but not from C6 cells. Thus wild-type T antigen can bind ori sequences even when complexed to the host protein. These data suggest that T antigen consists of different subpopulations with different functions.  相似文献   

18.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

19.
20.
In vitro splicing of simian virus 40 early pre mRNA.   总被引:19,自引:8,他引:11       下载免费PDF全文
The products of splicing of simian virus 40 early pre mRNA in HeLa cell nuclear extracts have been characterized. Of the two alternative splicing patterns exhibited by this precursor in vivo, which involve the use of alternative large T and small t 5' splice sites and a single shared 3' splice site, only one, producing large T mRNA, was found to occur in vitro. A number of possible intermediates and byproducts of splicing of large T mRNA were observed, including free large T 5' exon, lariat form intron joined to 3' exon and free lariat and linear forms of large T intron. The formation of these products argues strongly for a basic similarity in the mechanism underlying large T and other, non-alternative splices. A collection of RNAs resulting from protection of early pre mRNA at specific points from an endogenous 5' to 3' exonuclease activity in vitro have also been observed. The regions of the precursor RNA protected map to positions immediately upstream of the 5' splice sites of large T and small t and the lariat branchpoint, and may represent interaction of these regions with components of the splicing machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号