首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Multilocus Sequence Typing (MLST) is a frequently used typing method for the analysis of the clonal relationships among strains of several clinically relevant microbial species. MLST is based on the sequence of housekeeping genes that result in each strain having a distinct numerical allelic profile, which is abbreviated to a unique identifier: the sequence type (ST). The relatedness between two strains can then be inferred by the differences between allelic profiles. For a more comprehensive analysis of the possible patterns of evolutionary descent, a set of rules were proposed and implemented in the eBURST algorithm. These rules allow the division of a data set into several clusters of related strains, dubbed clonal complexes, by implementing a simple model of clonal expansion and diversification. Within each clonal complex, the rules identify which links between STs correspond to the most probable pattern of descent. However, the eBURST algorithm is not globally optimized, which can result in links, within the clonal complexes, that violate the rules proposed.  相似文献   

2.
Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.  相似文献   

3.
Feil EJ  Smith JM  Enright MC  Spratt BG 《Genetics》2000,154(4):1439-1450
Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.  相似文献   

4.

Background  

Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species.  相似文献   

5.
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec.  相似文献   

6.
Inference of bacterial microevolution using multilocus sequence data   总被引:5,自引:0,他引:5  
Didelot X  Falush D 《Genetics》2007,175(3):1251-1266
We describe a model-based method for using multilocus sequence data to infer the clonal relationships of bacteria and the chromosomal position of homologous recombination events that disrupt a clonal pattern of inheritance. The key assumption of our model is that recombination events introduce a constant rate of substitutions to a contiguous region of sequence. The method is applicable both to multilocus sequence typing (MLST) data from a few loci and to alignments of multiple bacterial genomes. It can be used to decide whether a subset of isolates share common ancestry, to estimate the age of the common ancestor, and hence to address a variety of epidemiological and ecological questions that hinge on the pattern of bacterial spread. It should also be useful in associating particular genetic events with the changes in phenotype that they cause. We show that the model outperforms existing methods of subdividing recombinogenic bacteria using MLST data and provide examples from Salmonella and Bacillus. The software used in this article, ClonalFrame, is available from http://bacteria.stats.ox.ac.uk/.  相似文献   

7.
SUMMARY: VeriScan is a software package for the analysis of DNA sequence polymorphisms at the whole genome scale. Among other features, the software (1) can conduct many population genetic analyses; (2) incorporates a multiresolution wavelet transform-based method that allows capturing relevant information from DNA polymorphism data; (3) facilitates the visualization of the results in the most commonly used genome browsers.  相似文献   

8.
Multilocus sequence typing (MLST) is a widely used system for typing microorganisms by sequence analysis of housekeeping genes. The main advantage of MLST in comparison to other typing techniques is the unambiguity and transferability of sequence data. However, a main disadvantage is the high cost of DNA sequencing. Here we introduce a high-throughput MLST (HiMLST) method that employs next-generation sequencing (NGS) technology (Roche 454), to generate large quantities of high-quality MLST data at low costs. The HiMLST protocol consists of two steps. In the first step MLST target genes are amplified by PCR in multi-well plates. During this PCR the amplicons of each bacterial isolate are provided with a unique DNA barcode, the multiplex identifier (MID). In the second step all amplicons are pooled and sequenced in a single NGS-run. The MLST profile of each individual isolate can be retrieved easily using its unique MID. With HiMLST we have profiled 575 isolates of Legionella pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pneumoniae in mixed species HiMLST experiments. In conclusion, the introduction of HiMLST paves the way for a broad employment of the MLST as a high-quality and cost-effective method for typing microbial species.  相似文献   

9.
10.
The endosymbiotic bacterium Wolbachia enhances its spread via vertical transmission by generating reproductive effects in its hosts, most notably cytoplasmic incompatibility (CI). Additionally, frequent interspecific horizontal transfer is evident from a lack of phylogenetic congruence between Wolbachia and its hosts. The mechanisms of this lateral transfer are largely unclear. To identify potential pathways of Wolbachia movements, we performed multilocus sequence typing of Wolbachia strains from bees (Anthophila). Using a host phylogeny and ecological data, we tested various models of horizontal endosymbiont transmission. In general, Wolbachia strains seem to be randomly distributed among bee hosts. Kleptoparasite‐host associations among bees as well as other ecological links could not be supported as sole basis for the spread of Wolbachia. However, cophylogenetic analyses and divergence time estimations suggest that Wolbachia may persist within a host lineage over considerable timescales and that strictly vertical transmission and subsequent random loss of infections across lineages may have had a greater impact on Wolbachia strain distribution than previously estimated. Although general conclusions about Wolbachia movements among arthropod hosts cannot be made, we present a framework by which precise assumptions about shared evolutionary histories of Wolbachia and a host taxon can be modelled and tested.  相似文献   

11.
There have been many efforts to develop Bacillus anthracis detection assays, but the problem of false-positive results has often been encountered. Therefore, to validate an assay for B. anthracis detection, it is critical to examine its specificity with the most closely related Bacillus isolates that are available. To define the most closely related Bacillus isolates to B. anthracis in our Bacillus collections, we analyzed by multilocus sequence typing (MLST) the phylogeny of 77 closely related Bacillus isolates selected from 264 Bacillus isolates. The selection includes all the Bacillus isolates that have been shown in our previous studies to produce false-positive results by some anthrax-detection assays. The MLST phylogenetic analyses revealed that 27 of the non-B. anthracis isolates clustered within the B. anthracis clade, and four of them (three sequence types, STs) had the highest degree of genetic relatedness with B. anthracis, 18 (11 STs) had the second highest, and five (five STs) had the third highest. We anticipate that the inclusion of the 19 ST isolates when analyzing B. anthracis detection assays will prove to be useful for screening for their specificity to detect B. anthracis.  相似文献   

12.
Staphylococcus equorum, the predominant bacterial species detected in Saeu-jeotgal, a Korean high-salt fermented seafood, is a candidate starter bacterium for Saeu-jeotgal fermentation. A multilocus sequence typing (MLST) scheme was developed to evaluate the genetic diversity and background of S. equorum strains isolated from Saeu-jeotgal. A total of 135 strains, including 117 isolates from Saeu-jeotgal, and others from Myeolchi-jeotgal, sausage, cheese and horse skin, were subjected to MLST, and the internal fragments of seven housekeeping genes, aroE, dnaJ, glpF, gmk, hsp60, mutS, and pta, were compared. This MLST scheme produced 45 sequence types (STs) and the eBURST algorithm clustered the STs into nine clonal groups and seven singletons. Clonal group 1, the major group, consisted of 30 isolates from cheese, Saeu-jeotgal and sausages, which were classified into 12 STs. The predominant ST, ST26, comprised 25 isolates and presented as a singleton. Most of the isolates from Myeolchi-jeotgal and sausages clustered on two different branches of a phylogenetic tree generated with a cluster analysis using the maximum likelihood algorithm. This MLST scheme established the genetic backgrounds of S. equorum strains isolated from different types of food. Among the housekeeping genes used for MLST, gmk had the fewest allele types and fairly low sequence identities (74.0–90.0 %) within the Staphylococcus species. Therefore, sequence analyses of the gmk gene and 16S rRNA gene can be used for the accurate and rapid identification of S. equorum.  相似文献   

13.
《Journal of Asia》2014,17(1):105-112
Wolbachia is a widespread endosymbiont of insects with a diverse range of biological effects on its hosts. We studied the prevalence of Wolbachia in some important species of tephritids in Iran. Among different populations of five fruit fly species, Dacus ciliatus (cucurbit fly), Rhagoletis cerasi (cherry fruit fly), Ceratitis capitata (Mediterranean fruit fly), Myiopardalis pardalina (melon fly) and Carypomya vesuviana (jujube fly), two species, R. cerasi and C. vesuviana, showed infection with separate Wolbachia strains, namely wCer6 and wVes1, respectively. C. vesuviana is introduced here as a novel host for Wolbachia. Genotyping of Wolbachia strains in 12 populations of five fruit fly species, using multilocus sequence typing (MLST) and the wsp gene sequence showed the occurrence of two new strains as well as a new strain type (ST) belonging to the A supergroup. On the basis of the results of this study, 12 barcodes under five species of Iranian tephritids have been added to the database of DNA barcodes. Inter- and intra-specific differences among COI sequences showed a clear gap in barcoding among most fruit flies.  相似文献   

14.
15.
megasat is software that enables genotyping of microsatellite loci using next‐generation sequencing data. Microsatellites are amplified in large multiplexes, and then sequenced in pooled amplicons. megasat reads sequence files and automatically scores microsatellite genotypes. It uses fuzzy matches to allow for sequencing errors and applies decision rules to account for amplification artefacts, including nontarget amplification products, replication slippage during PCR (amplification stutter) and differential amplification of alleles. An important feature of megasat is the generation of histograms of the length–frequency distributions of amplification products for each locus and each individual. These histograms, analogous to electropherograms traditionally used to score microsatellite genotypes, enable rapid evaluation and editing of automatically scored genotypes. megasat is written in Perl, runs on Windows, Mac OS X and Linux systems, and includes a simple graphical user interface. We demonstrate megasat using data from guppy, Poecilia reticulata. We genotype 1024 guppies at 43 microsatellites per run on an Illumina MiSeq sequencer. We evaluated the accuracy of automatically called genotypes using two methods, based on pedigree and repeat genotyping data, and obtained estimates of mean genotyping error rates of 0.021 and 0.012. In both estimates, three loci accounted for a disproportionate fraction of genotyping errors; conversely, 26 loci were scored with 0–1 detected error (error rate ≤0.007). Our results show that with appropriate selection of loci, automated genotyping of microsatellite loci can be achieved with very high throughput, low genotyping error and very low genotyping costs.  相似文献   

16.
The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994-2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%.  相似文献   

17.
Multi-locus sequence typing (MLST) has emerged as the state-of-the-art method for resolving bacterial population genetics but it is expensive and time consuming. We evaluated the potential of high resolution melting (HRM) to identify known MLST alleles of Campylobacter jejuni at reduced cost and time. Each MLST locus was amplified in two or three sub fragments, which were analyzed by HRM. The approach was investigated using 47 C. jejuni isolates, previously characterized by classical MLST, representing isolates from diverse environmental, animal and clinical sources and including the six most prevalent sequence types (ST) and the most frequent alleles. HRM was then applied to a validation set of 84 additional C. jejuni isolates from chickens; 92% of the alleles were resolved in 35 hours of laboratory time and the cost of reagents per isolate was $20 compared with $100 for sequence-based typing. HRM has the potential to complement sequence-based methods for resolving SNPs and to facilitate a wide range of genotyping studies.  相似文献   

18.
【背景】弯曲菌(Campylobacter)是重要的人畜共患肠道病原菌,可通过食物链传播,引起人类腹泻性肠炎。【目的】了解猪源弯曲菌耐药特征和分子遗传特征,对江苏省10个规模化猪场进行弯曲菌分离和耐药性检测,并研究分离株的分子分型。【方法】采用琼脂平板稀释法进行最低抑菌浓度(minimal inhibitory concentration,MIC)测定,PCR方法扩增耐药基因,以弯曲菌7个管家基因(aspA、glnA、gltA、glyA、pgm、tkt和uncA)为目的基因进行多位点序列分型(multilocus sequence typing,MLST)研究。【结果】100份样品共分离出结肠弯曲菌22株,分离率为22%,弯曲菌检出情况与养殖规模和日龄无关(P>0.05)。耐药性试验结果显示,20株分离株为多重耐药菌株(81.82%,20/22),猪源结肠弯曲菌分离株对10种抗生素耐药程度不一,分别为:庆大霉素36.36%,链霉素50%,克林霉素27.27%,氯霉素13.64%,四环素40.91%,环丙沙星18.18%,萘啶酸63.63%,泰利霉素59.09%,红霉素100%,阿...  相似文献   

19.
【背景】弯曲菌是一种重要的食源性人兽共患病原菌,革兰氏阴性、微需氧、弯曲螺旋状。【目的】为了解安徽地区弯曲菌流行状况和分子遗传特征,对安徽6个不同地区动物源的弯曲菌进行分离鉴定,并研究分离株分子分型。【方法】通过形态学及培养特性观察、生化试验、PCR方法对菌株进行鉴定。以弯曲菌7个管家基因asp A、gln A、glt A、gly A、pgm、tkt和unc A为目的基因对分离株进行多位点序列分型,并制成遗传进化树。【结果】共分离到42株弯曲菌菌株,源自6个地区的分离株具有较为一致的形态特性和相似的生化特性。多位点序列分型结果显示,本研究中共获得32种ST型,共发现9种新的ST型(8190、8222、8223、8831、8833、8841、8832、8834和8843)和6个新的等位基因(gln A606、gln A607、glt A518、gly A680、pgm863和unc A541)。进化树结果显示,空肠弯曲菌与结肠弯曲菌遗传关系相差甚远,聚集归为两个大群,分别有5个分支和3个分支。【结论】安徽6个地区不同来源的空肠弯曲菌与结肠弯曲菌均有丰富的基因型,且没有明显优势的基因型。从遗传变异的角度来看,空肠弯曲菌复杂多样,结肠弯曲菌相对保守。  相似文献   

20.
Bacillus cereus strains from cases of severe or lethal systemic infections, including respiratory symptoms cases, were analyzed using multilocus sequence typing scheme of B. cereus MLST database. The isolates were evenly distributed between the two main clades, and 60% of them had allele profiles new to the database. Half of the collection's strains clustered in a lineage neighboring Bacillus anthracis phylogenetic origin. Strains from lethal cases with respiratory symptoms were allocated in both main clades. This is the first report of strains causing respiratory symptoms to be identified as genetically distant from B. anthracis. The phylogenetic location of the presented here strains was compared with all previously submitted to the database isolates from systemic infections, and were found to appear in the same clusters where clinical isolates from other studies had been assigned. It seems that the pathogenic strains are forming clusters on the phylogenetic tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号