首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human promyelocytic leukemia cell line (undifferentiated HL-60 cells) as well as a granulocyte form of HL-60 cells induced in vitro by exposure to dimethyl sulfoxide were examined for binding, metabolism, and biological responses to platelet-activating factor (PAF). Undifferentiated and differentiated HL-60 cells each exhibit a high capacity to incorporate and metabolize [3H]PAF at 37 degrees C; however, the amount of [3H]PAF that is assimilated by both cell populations is greatly reduced and its metabolism abolished at less than or equal to 4 degrees C. At 0 degrees C HL-60 granulocytes bind more [3H]PAF than their undifferentiated counterparts. Binding to differentiated cells reaches equilibrium within 80 min and is saturable, reversible and specific; PAF receptor antagonists WEB 2086, L-659,989, BN 52021, and kadsurenone abolish this specific [3H]PAF binding. In contrast, [3H]PAF uptake by undifferentiated HL-60 cells is neither saturable nor sensitive to specific receptor antagonists. Scatchard analyses reveal 5850 +/- 850 binding sites per differentiated HL-60 cell with a dissociation constant of 0.66 +/- 0.15 nM. In the presence of cytochalasin B, PAF (200 nM) induces degranulation only in differentiated cells and this response also is blocked by PAF receptor antagonists. Our results demonstrate that HL-60 cells develop specific and functionally active PAF receptors only after chemically induced differentiation into granulocytes.  相似文献   

2.
Shin Y  Daly JW  Choi OH 《Cell calcium》2000,27(5):269-280
Sphingosine induces a biphasic increase in cytosolic-free Ca(2+)([Ca(2+)](i)) with an initial peak followed by a sustained increase in HL-60 cells differentiated into neutrophil-like cells. The initial peak is not affected by the presence of ethylene glycol bis (beta-aminoethyl ether) N, N, N', N-tetraacetic acid (EGTA) in the buffer and appears to be dependent on conversion of sphingosine to sphingosine -1-phosphate (S1P) by sphingosine kinase, since it is blocked by the presence of N, N-dimethylsphingosine (DMS), which, like sphingosine, causes a sustained increase itself. The sustained increase that is elicited by sphingosine or DMS is abolished by the presence of EGTA in the buffer. The sustained sphingosine-induced Ca(2+)influx does not appear due to Ca(2+)influx through store-operated Ca(2+)(SOC) channels, since the influx is not inhibited by SKF 96365, nor is it augmented by loperamide. In addition, sphingosine and DMS attenuate the Ca(2+)influx through SOC channels that occurs after depletion of intracellular stores by ATP or thapsigargin. Both the initial peak and the sustained increase in [Ca(2+)](i)elicited by sphingosine can be blocked by phorbol 12-myristate 13-acetate (PMA)-elicited activation of protein kinase C. Thus, in HL-60 cells sphingosine causes a mobilization of Ca(2+)from intracellular Ca(2+)stores, which requires conversion to S1P, while both sphingosine and DMS elicit a Ca(2+)influx through an undefined Ca(2+)channel and cause a blockade of SOC channels.  相似文献   

3.
Leukotriene C4 (LTC4) synthase was highly expressed in the human U937 monoblast leukemia cell line when differentiated into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide. The specific activity of LTC4 synthase in differentiated cells (399.0 +/- 84.1 pmol of LTC4 formed.min-1.mg-1) was markedly higher (10-fold; p less than 0.001) than in undifferentiated U937 cells (39.9 +/- 16.7 pmol of LTC4 formed.min-1.mg-1) or freshly isolated blood monocytes (21.5 +/- 4.8 pmol of LTC4 formed.min-1.mg-1). The increase in LTC4 synthase activity following dimethyl sulfoxide-induced differentiation was substantially higher than the increase observed for other proteins involved in leukotriene biosynthesis. LTC4 synthase activity was unaffected in U937 cells differentiated by growth in the presence of phorbol 12-myristate 13-acetate. The HL-60 myeloblast leukemia cell line expressed higher LTC4 synthase levels when differentiated into either neutrophil-like or macrophage-like cells by growth in the presence of dimethyl sulfoxide or phorbol 12-myristate 13-acetate (respectively), but reached a specific activity comparable only to undifferentiated U937 cells. Human LTC4 synthase was found to be a unique membrane-bound enzymatic activity completely distinct from alpha, mu, pi, theta, and microsomal glutathione S-transferases, as determined by differential detergent solubilization, chromatographic separation, substrate specificity, and Western blot analysis. An 18-kDa polypeptide was specifically labeled in membranes from dimethyl sulfoxide-differentiated U937 cells using azido 125I-LTC4, a photoaffinity probe based on the product of the LTC4 synthase-catalyzed reaction. Photolabeling of the 18-kDa polypeptide was specifically competed for by LTC4 (greater than 50% at 0.1 microM) but not by 100,000-fold higher concentrations of reduced glutathione (10 mM). Elevation of both the level of the specifically photolabeled 18-kDa polypeptide and of LTC4 synthase specific activity occurred concomitantly with dimethyl sulfoxide differentiation of U937 cells. We conclude that differentiation of U937 cells into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide results in high levels of expression of LTC4 synthase activity. Human LTC4 synthase is a unique enzyme with a high degree of specificity for LTA4 and may therefore be dedicated exclusively to the formation of LTC4 in vivo. An 18-kDa membrane polypeptide, specifically labeled by a photoaffinity derivative of LTC4, is a candidate for being either LTC4 synthase or a subunit thereof.  相似文献   

4.
U Moens  B E Bang  J Aarbakke 《Life sciences》1990,47(17):1555-1560
Altered gene expression of the proto-oncogenes c-fos and c-myc is associated with differentiation of the human promyelocytic leukemia (HL-60) cells. We studied changes of cyclic AMP levels and c-fos and c-myc mRNA levels after stimulation with theophylline and theophylline plus isoproterenol. Reduced c-fos and c-myc mRNA levels were detected, but the reduction could not, however, be related to the observed alternations in cyclic AMP concentrations. Expression of c-jun and c-Ha-ras was not affected under these conditions.  相似文献   

5.
In this study we have investigated the link between increased Ca2+ influx rate, acquired upon the differentiation of HL-60 cells, to changes in cytosolic free Ca2+ ([Ca2+]i], evoked by the chemotactic peptide-FMLP and the mitogen Con-A. Although differentiating and undifferentiated HL-60 cells exhibited similar steady-state levels of [Ca2+]i, cells induced to differentiate by dibutyryl-cAMP, at 48 h, exhibited enhanced Ca2+ influx rate, measured by non-steady state 45Ca2+ uptake, and augmentation of FMLP-stimulated Ca2+ influx. At 120 h the above cells responded to FMLP but not to Con-A, by a marked augmentation of Ca2+ influx, and elevated levels of [Ca2+]i. On the other hand HL-60 cells induced to differentiate by retinoic acid responded, as described above, to Con-A but not to FMLP. HL-60 cells grown in the presence of cholera-toxin, were reported to express high levels of FMLP-receptors without expressing cell differentiation. We have demonstrated that, in these cells the Ca2+ influx rate was unchanged, moreover, FMLP-stimulated Ca2+ influx and [Ca2+]i rise were low. These findings strongly suggest that the presence of receptor is not sufficient for FMLP-mediated changes in [Ca2+]i. A link between increased Ca2+ influx rate, acquired upon induction of differentiation, and receptor mediated response in these cells is proposed.  相似文献   

6.
Organosulfur compounds have been established to possess anticancer effects. To provide a better understanding of the biological function of dimethyl sulfides, dimethyl monosulfide (Me(2)S), dimethyl disulfide (Me(2)S(2)), dimethyl trisulfide (Me(2)S(3)) and dimethyl tetrasulfide (Me(2)S(4)) were used as experimental materials to investigate their effects on apoptosis induction in human leukemia Jurkat cells and HL-60 cells. Treatment with 20 muM dimethyl sulfides for 24 h decreased the viability of both cells. The cell viability-reducing effect of these sulfides was in the following order: Me(2)S(4) asymptotically equal to Me(2)S(3) > Me(2)S(2) asymptotically equal to Me(2)S for Jurkat cells and Me(2)S(4) > Me(2)S(3) > Me(2)S(2) asymptotically equal to Me(2)S for HL-60 cells. Me(2)S(3) and Me(2)S(4) significantly induced DNA fragmentation and caspase-3 activation. The addition of GSH or NAC completely suppressed the sulfide-induced apoptosis. Our results indicate that dimethyl sulfides with a larger number of sulfur atoms more strongly induced apoptosis in both human leukemia cells via ROS production and caspase-3 activation.  相似文献   

7.
beta-N-Acetylhexosaminidase of HL-60 cells was separated into two main forms, A and S, by chromatography on DEAE-cellulose. Analysis of developmental changes in the isoenzyme pattern was complicated by the fact that the specific activity of beta-N-acetylhexosaminidase underwent a 6-fold change during the normal growth cycle. Two other lysosomal enzymes, beta-galactosidase and alpha-mannosidase, behaved similarly. Induction of differentiation of HL-60 cells with dimethyl sulphoxide at a low cell density (3 x 10(5) cells/ml) had a greater effect on the abundance of alpha-subunits of beta-N-acetylhexosaminidase, measured with 4-methylumbelliferyl-beta-N-acetylglucosaminide 6-sulphate, than of beta-subunits, measured with 4-methylumbelliferyl-beta-N-acetylglucosamine, and resulted in an isoenzyme profile in which A and B were the major forms, with the levels of form S greatly decreased.  相似文献   

8.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

9.
Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.  相似文献   

10.
This investigation provides evidence that a 60-Hz electromagnetic field (EMF) at 1 gauss (G) can drive differentiation of cultured hematopoietic progenitor cells. HL-60 cells are known to differentiate from a nonphagocytic suspension culture to an attached fibroblast-like culture with high phagocytic activity in the presence of the tumor-promoting phorbol ester 12-O-tetradecanoylphorbal-13-acetate (TPA). The effect of 60-Hz EMF at 1 G on differentiation is approximately equivalent to treatment of the cells with 250-500 pg/ml TPA. Furthermore, the effect of both EMF and TPA treatment on differentiation is additive at low TPA concentrations. The results strongly suggest similarities between the effects of TPA treatment and EMF exposure and thus provide an approach for tracing the origins of the molecular effects of EMF exposure, as many transduction pathways in the differentiative process are defined.  相似文献   

11.
12.
We have studied the interactions of dimethyl sulfoxide (DMSO), Giant Cell Tumor (GCT) cell-conditioned medium (GCT CM), and highly purified granulocyte-macrophage colony-stimulating factors (GM-CSF) on the growth and maturation of a highly passaged population of HL-60 cells. DMSO produced dose-dependent inhibition of HL-60 growth in liquid and semisolid media. Growth was partially to completely restored by the addition of GCT CM to cultures. Experiments in which cell volume, cell cycle kinetics, tritiated thymidine (3HTdr) incorporation, cell number, and nitroblue tetrazolium (NBT) reduction were compared during culture indicated that DMSO inhibited the spontaneous increase in cell volume and flow of cells through the cell cycle which occurred in the first day of culture, the increase in 3HTdr incorporation which was detectable by day 2; and the increment in cell counts which occurred by day 3. These effects were opposed by GCT CM. In contrast, the DMSO-induced increase in NBT reduction which occurred by day 6 was not influenced by GCT CM. The major principle opposing DMSO was GM-CSF, since (1) highly purified GM-CSF from GCT cells and recombinant GM-CSF from COS cells transfected with the Mo cell GM-CSF gene overcame greater than 50% of DMSO inhibition; and (2) conditioned media from cells not producing CSF, G-CSF from GCT cells, and recombinant G-CSF from Escherichia coli transfected with the G-CSF gene from 5,637 cells were inactive. DMSO had little or no effect on the elaboration of autostimulatory activity by HL-60 cells. DMSO is a useful agent for inhibiting the spontaneous growth of HL-60 cells and restoring their dependence on GM-CSF, a property which may be mediated through the effects of DMSO on cell cycle kinetics and/or maturation.  相似文献   

13.
The incubation of undifferentiated promyelocytic HL-60 cells with DMSO resulted in the rapid transmethylation of phosphatidyl ethanolamine (PE) into phosphatidylcholine (PC) which was maximal at 60 secs. This rapid generation of PC was followed by a decrease of the methylated phospholipid and the release of arachidonic acid. Thus, the rapid DMSO-induced phospholipid methylation coupled with release of arachidonic acid (precursor for eicosanoids) prior to morphological evidence of cellular differentiation may represent early biochemical events which result in the generation of intracellular chemical signals which may program the promyelocytic cells into a differentiation mode.  相似文献   

14.
Human myeloblastic cell line HL-60 cells undergo apoptosis during in vitro culture in a cell density-dependent manner, and this cell density-dependent apoptosis was observed when the concentration of cultured cells exceeded 8–10 × 105 cells/ml. Dimethyl sulfoxide (DMSO), a differentiation inducer of HL-60 cells, did not amplify, but rather potently inhibited, this apoptosis. In a low density culture condition, DMSO attenuated proliferation of HL-60 cells in spite of its inhibition of apoptosis. In contrast, DMSO did support cell survival under high cell density conditions, and DMSO-treated HL-60 cells reached an extremely high concentration of 2–3 × 106 cells/ml, a condition which could never be possible in a usual culture environment. Thus, DMSO exerted dual effects on cell proliferation, i.e., growth inhibition and apoptosis inhibition, and the sum of these effects resulted in an apparently distinct phenomenon according to the culture conditions including cell density. J. Cell. Physiol. 174:135–143, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
We have studied the activity of the Na+/H+ exchanger during dimethyl sulfoxide (Me2SO)-induced maturation of the human promyelocytic leukemia cell line HL-60. 22Na uptake was measured in cells preloaded with Li+ or NH+4 in order to specifically activate the Na+/H+ exchanger. Measurement of the rate of uptake as a function of sodium concentration revealed a decrease in Km for Na+ from 38 +/- 3 to 13 +/- 1 mM after 20-24-h treatment with Me2SO. Vmax was not changed significantly. Inhibition of the exchanger by dimethylamiloride (DMA) and by acidic external pH was similar in treated and untreated cells. Thus it is unlikely that the Na+ binding site is altered. A change, however, was observed in the regulation of the exchanger by intracellular pH. In control cells maximal stimulation of the Na+ uptake was observed when the intracellular pH decreased from 7.25 to 7.00. In Me2SO-treated cells the 22Na uptake at intracellular pH 7.00 was greater than in the control and continued to increase as the intracellular pH was adjusted below 7.00, down to 6.75. This suggests that the Na+/H+ exchanger in Me2SO-treated cells is altered structurally in its allosteric H+ binding site. The appearance of this modified exchanger preceded by a period of days the appearance of a functional property characteristic of mature granulocytes, that is, the capability to produce superoxide, suggesting that the modified exchanger may be required for the expression of the mature phenotype. A second modification, a decrease in the Vmax of the 22Na uptake, occurred after 2 days treatment with Me2SO. This reduction may reflect a decrease in the number of functioning exchangers per cell.  相似文献   

16.
BACKGROUND: Previous experiments in our laboratory investigating apoptosis induced in HL-60 cells by camptothecin (CAM) have revealed that the sequence and rapidity of the apoptotic phenomena in an individual cell depend on the proliferative state of that cell when it encounters CAM. The role of mitochondria in HL-60 apoptosis was explored using an inhibitor of oxidative phosphorylation, antimycin A (AMA). METHODS: Changes in cell light scatter, binding of annexin V-fluorescein isothiocyanate (FITC), uptake of propidium iodide (PI), and DNA content after membrane fixation/permeabilization were monitored by flow cytometry. Z-VAD-FMK was used to inhibit caspases. Fluorescence microscopy was used to examine cell morphology. RESULTS: Cells in the G1 phase of the cell cycle were the first to exhibit signs of apoptosis in response to 100 microM AMA and some of these cells disintegrated without exposing to phosphatidylserine (PS). Caspase inhibition prevented fragmentation of DNA, the nucleus, and the cell, but only delayed PS exposure and loss of plasma membrane integrity. CONCLUSIONS: The highly active mitochondria of G1-phase HL-60 cells make them particularly sensitive to AMA. PS exposure and plasma membrane damage are mediated by noncaspase molecules released from mitochondria. We hypothesize that if mitochondria are subjected to a sufficiently severe insult, whether indirectly as a result of extensive CAM-induced DNA damage or directly by the effect of AMA on electron transport, the nature and quantities of the proapoptotic molecules released are such that apoptosis proceeds to the point of cell disintegration before the PS exposure pathway is complete.  相似文献   

17.
18.
P D Dass  F E Murdoch  M C Wu 《In vitro》1984,20(11):869-875
Several studies indicate that glutamine is a critical requirement for growth of cultured cells. The present studies describe the effect of deprivation of glucose or glutamine on mouse bone marrow cell or HL-60 cell colony formation in soft agar. The mouse bone marrow cells were induced to undergo granulocyte/macrophage type differentiation by colony-stimulating factor. Glutamine, but not glucose, was found to be an indispensable metabolite for the cloning of HL-60 cells or differentiated mouse bone marrow cells. In addition, the effect of glucose or glutamine on the rate of differentiation of dimethylsulfoxide (DMSO)-induced HL-60 cells in liquid culture was studied. Glutamine was found to be superior to glucose in its ability to support the proliferation and myeloid differentiation of HL-60 cells. When an optimal concentration of DMSO was used, the rate of differentiation of induced HL-60 cells was found to be a function of the concentration of glutamine. In addition to these studies glutamine utilization and product formation was studied in induced and uninduced HL-60 cells after 60 min incubation with 1 mM initial glutamine concentration. The fractional distribution of the glutamine carbon into its metabolic products remained unchanged in induced versus uninduced HL-60 cells. However, the rate of utilization of glutamine and product formation by terminally differentiated HL-60 cells was less than the rate of utilization of glutamine by undifferentiated HL-60 cells. The data do not explain the role of glutamine in the complex process of differentiation but establish the critical requirements for glutamine, but not glucose, in myelopoiesis.  相似文献   

19.
Summary Several studies indicate that glutamine is a critical requirement for growth of cultured cells. The present studies describe the effect of deprivation of glucose or glutamine on mouse bone marrow cell or HL-60 cell colony formation in soft agar. The mouse bone marrow cells were induced to undergo granulocyte/macrophage type differentiation by colony-stimulating factor. Glutamine, but not glucose, was found to be an indispensable metabolite for the cloning of HL-60 cells or differentiated mouse bone marrow cells. In addition, the effect of glucose or glutamine on the rate of differentiation of dimethylsulfoxide (DMSO)-induced HL-60 cells in liquid culture was studied. Glutamine was found to be superior to glucose in its ability to support the proliferation and myeloid differentiation of HL-60 cells. When an optimal concentration of DMSO was used, the rate of differentiation of induced HL-60 cells was found to be a function of the concentration of glutamine. In addition to these studies glutamine utilization and product formation was studied in induced and uninduced HL-60 cells after 60 min incubation with 1 mM initial glutamine concentration. The fractional distribution of the glutamine carbon into its metabolic products remained unchanged in induced versus uninduced HL-60 cells. However, the rate of utilization of glutamine and product formation by terminally differentiated HL-60 cells was less than the rate of utilization of glutamine by undifferentiated HL-60 cells. The data do not explain the role of glutamine in the complex process of differentiation but establish the critical requirements for glutamine, but not glucose, in myelopoiesis. This work has been supported by USPHS Grants AM 31624 and CA 00859 and a Faculty Research Grant from Texas College of Osteopathic Medicine.  相似文献   

20.
Geranylgeranylacetone (GGA) induces apoptosis in human leukemia HL-60 cells in a dose- and time-dependent manner. This effect was completely prevented by the pan-caspase inhibitor z-Val-Ala-Asp(OMe) fluoromethylketone, thereby implicating the caspase cascade in the process. Prior to DNA fragmentation, GGA treatment markedly activated caspase-3(-like) proteases, which might be responsible for the observed apoptosis. In addition, GGA treatment interfered with the processing and membrane localization of Rap1 and Ras, and these changes may be a result of apoptosis. Moreover, nitric oxide donors significantly accentuated the GGA-induced apoptosis, suggesting that the apoptotic pathway induced by GGA might be regulated by a redox-sensitive mechanism. Taken together, these data suggest that the isoprenoid, GGA, is an effective inducer of apoptotic cell death in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号