首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and the butanol-hyperproducing mutant BA101, PTS activity declined at the end of exponential growth, while glucokinase activity increased in the later stages of fermentation. The non-PTS uptake system, together with enhanced glucokinase activity, may provide an explanation for the ability of the mutant to utilize glucose more effectively during fermentation despite the fact that it is partially defective in PTS activity.  相似文献   

2.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

3.
Laboratory adaptive evolution of microorganisms offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. By combining a fibrous-bed bioreactor, we successfully developed a simple and valuable adaptive evolution strategy in repeated-batch fermentation mode with high initial substrate concentration and evolved Clostridium tyrobutyricum mutant with significantly improved butyric acid volumetric productivity up to 2.25 g/(L h), which is the highest value in batch fermentation reported so far. Further experiments were conducted to pay attention to glucose transport system in consideration of the high glucose consumption rate resulted from evolution. Complete characterization and comparison of the glucose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) were carried out in the form of toluene-treated cells and cell-free extracts derived from both C. tyrobutyricum wide-type and mutant, while an alternative glucose transport route that requires glucokinase was confirmed by the phenomena of resistance to the glucose analogue 2-deoxyglucose and ATP-dependent glucose phosphorylation. Our results suggest that C. tyrobutyricum mutant is defective in PTS activity and compensates for this defect with enhanced glucokinase activity, resulting in the efficient uptake and consumption of glucose during the whole metabolism.  相似文献   

4.
Modifying substrate uptake systems is a potentially powerful tool in metabolic engineering. This research investigates energetic and metabolic changes brought about by the genetic modification of the glucose uptake and phosphorylation system of Escherichia coli. The engineered strain PPA316, which lacks the E. coli phosphotransferase system (PTS) and uses instead the galactose-proton symport system for glucose uptake, exhibited significantly altered metabolic patterns relative to the parent strain PPA305 which retains PTS activity. Replacement of a PTS uptake system by the galactose-proton symport system is expected to lower the carbon flux to pyruvate in both aerobic and anaerobic cultivations. The extra energy cost in substrate uptake for the non-PTS strain PPA 316 had a greater effect on anaerobic specific growth rate, which was reduced by a factor of five relative to PPA 305, while PPA 316 reached a specific growth rate of 60% of that of the PTS strain under aerobic conditions. The maximal cell densities obtained with PPA 316 were approximately 8% higher than those of the PTS strain under aerobic conditions and 14% lower under anaerobic conditions. In vivo NMR results showed that the non-PTS strain possesses a dramatically different intracellular environment, as evidenced by lower levels of total sugar phosphate, NAD(H), nucleoside triphosphates and phosphoenolpyruvate, and higher levels of nucleoside diphosphates. The sugar phosphate compositions, as measured by extract NMR, were considerably different between these two strains. Data suggest that limitations in the rates of steps catalyzed by glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, and pyruvate kinase may be responsible for the low overall rate of glucose metabolism in PPA316. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 583-590, 1997.  相似文献   

5.
We have determined the role played by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in carbon catabolite repression (CCR) of xylose utilization in Bacillus megaterium. For that purpose we have cloned, sequenced and inactivated the genes ptsH and ptsl of B. megaterium, encoding HPr and EI of the PTS, respectively. While glucose uptake of a ptsHI mutant is not affected at 12.5 mM of glucose, CCR of the xyl operon is reduced in this mutant from 16-fold to 3-fold. This may be attributed to the loss of the corepressor of CcpA, HPr(Ser-P), or could result from the slower growth rate of the mutant. In contrast, CCR exerted by fructose or mannitol is completely abolished. We conclude that glucose triggers additional mechanisms of CCR than fructose or mannitol. The remaining 3-fold glucose repression is relieved in a strain in which ptsHI and glk, encoding glucokinase, are inactivated. This result indicates that glucose metabolism is necessary for CCR. The ability of the ptsHI mutant to take up glucose suggests the existence of a second, non-PTS glucose uptake system. The Km and vmax values of this transporter ranged between 2 and 5 mM and 154 to 219 nmol/[(mg protein)*min], respectively.  相似文献   

6.
Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with K(s) values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Δhpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Δhpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield.  相似文献   

7.
8.
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to take up and phosphorylate glucose, fructose, and sucrose, the major sugars from agricultural crops that are used as the primary feedstocks for industrial amino acid fermentation. This means that worldwide amino acid production using this organism has depended exclusively on the PTS. Recently, a better understanding not only of PTS-mediated sugar uptake but also of global regulation associated with the PTS has permitted the correction of certain negative aspects of this sugar transport system for amino acid production. In addition, the recent identification of different glucose uptake systems in this organism has led to a strategy for the generation of C. glutamicum strains that express non-PTS routes instead of the original PTS. The potential practical advantages of the development of such strains are discussed.  相似文献   

9.
Glucose uptake by Corynebacterium glutamicum is predominantly assured by a mannose phosphotransferase system (PTS) with a high affinity for glucose (Km=0.35 mM). Mutants selected for their resistance to 2-deoxyglucose (2DG) and lacking detectable PEP-dependent glucose-transporting activity, retained the capacity to grow on media in which glucose was the only carbon and energy source, albeit at significantly diminished rates, due to the presence of a low affinity (Ks=11 mM) non-PTS uptake system. During growth in media of different osmolarity, specific rates of glucose consumption and of growth of wild type cells were diminished. Cell samples from these cultures were shown to possess similar PTS activities when measured under standard conditions. However, when cells were resuspended in buffer solutions of different osmolarity measurable PTS activity was shown to be dependent upon osmolarity. This inhibition effect was sufficient to account for the decreased rates of both sugar uptake and growth observed in fermentation media of high osmolarity. The secondary glucose transporter was, however, not influenced by medium osmolarity. During industrial fermentation conditions with accumulation of glutamic acid and the corresponding increase in medium osmolarity, similar inhibition of the sugar transport capacity was observed. This phenomenon provokes a major process constraint since the decrease in specific rates leads to an increasing proportion of sugar catabolised for maintenance requirements with an associated decrease in product yields.  相似文献   

10.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

11.
Streptococcus mutans transports glucose via the phosphoenolpyruvate (PEP)-dependent sugar phosphotransferase system (PTS). Earlier studies indicated that an alternate glucose transport system functions in this organism under conditions of high growth rates, low pH, or excess glucose. To identify this system, S. mutans BM71 was transformed with integration vector pDC-5 to generate a mutant, DC10, defective in the general PTS protein enzyme I (EI). This mutant expressed a defective EI that had been truncated by approximately 150 amino acids at the carboxyl terminus as revealed by Western blot (immunoblot) analysis with anti-EI antibody and Southern hybridizations with a fragment of the wild-type EI gene as a probe. Phosphotransfer assays utilizing 32P-PEP indicated that DC10 was incapable of phosphorylating HPr and EIIAMan, indicating a nonfunctional PTS. This was confirmed by the fact that DC10 was able to ferment glucose but not a variety of other PTS substrates and phosphorylated glucose with ATP and not PEP. Kinetic assays indicated that the non-PTS system exhibited an apparent Ks of 125 microM for glucose and a Vmax of 0.87 nmol mg (dry weight) of cells-1 min-1. Sugar competition experiments with DC10 indicated that the non-PTS transport system had high specificity for glucose since glucose transport was not significantly by a 100-fold molar excess of several competing sugar substrates, including 2-deoxyglucose and alpha-methylglucoside. These results demonstrate that S. mutans possesses a glucose transport system that can function independently of the PEP PTS.  相似文献   

12.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

13.
Due to catabolite repression in microorganisms, sugar mixtures cannot be metabolized in a rapid and efficient manner. Therefore, the development of mutant strains that avoid this regulatory system is of special interest to fermentation processes. In the present study, the utilization of sugar mixtures by an Escherichia coli mutant strain devoid of the phosphotransferase system (PTS) was characterized. This mutant can transport glucose (PTS- Glucose+ phenotype) by a non-PTS mechanism as rapidly as its wild-type parental strain. In cultures grown in minimal medium supplemented with glucose-xylose or glucose-arabinose mixtures, glucose repressed arabinose- or xylose-utilization in the wild-type strain. However, under the same culture conditions with the PTS- Glucose+ mutant, glucose and arabinose were co-metabolized, but glucose still exerted a partial repressive effect on xylose consumption. In cultures growing with a triple mixture of glucose-arabinose-xylose, the wild-type strain sequentially utilized glucose, arabinose and finally, xylose. In contrast, the PTS- Glucose+ strain co-metabolized glucose and arabinose, whereas xylose was utilized after glucose-arabinose depletion. As a result of glucose-arabinose co-metabolism, the PTS- Glucose+ strain consumed the total amount of sugars contained in the culture medium 16% faster than the wild-type strain. [14C]-Xylose uptake experiments showed that in the PTS- Glucose+ strain, galactose permease increases xylose transport capacity and the observed partial repression of xylose utilization depends on the presence of intracellular glucose.  相似文献   

14.
Carbohydrate Utilization in Lactobacillus sake   总被引:5,自引:2,他引:3       下载免费PDF全文
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.  相似文献   

15.
16.
17.
Escherichia coli and Salmonella typhimurium preferentially utilize sugar substrates of the phosphoenol-pyruvate:glycose phosphotransferase system (PTS) when the growth medium also contains other sugars. This phenomenon, diauxic growth, is regulated by the crr gene, which encodes the PTS protein IIIGlc (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 16241-16253). We have proposed that non-PTS permeases are regulated by their interaction with IIIGlc, and in vitro studies from other laboratories have provided support for this model, but the in vivo effects of excess IIIGlc are not known. In the present studies, transformed cells that overproduced IIIGlc 2- and 10-fold, respectively, were constructed from a pts+ strain of E. coli and plasmids containing the crr gene. In the 2-fold overproducer, fermentation of, and growth on the non-PTS carbohydrates glycerol, lactose, maltose, and melibiose was generally more sensitive to the glucose analogue methyl-alpha-D-glucopyranoside than in a control strain containing normal levels of IIIGlc. In addition, inhibition of lactose permease activity by methyl-alpha-glucoside (inducer exclusion) was more effective in the 2-fold overproducer than in the control strain, particularly when the permease activity was high. The 10-fold IIIGlc overproducing strain had a requirement for the amino acids methionine, isoleucine, leucine, and valine that may or may not be related to the increased concentration of IIIGlc. Fermentation of non-PTS carbohydrates was also poor in the latter strain. Finally, lactose permease activity was 50% of that in control cells containing the same levels of beta-galactosidase, and the lactose permease activity in the IIIGlc overproducer was reduced to an extremely low level in the presence of methyl alpha-glucoside. Thus there is an inverse relationship between the cellular concentration of IIIGlc and the ability to metabolize non-PTS substrates. The results are consistent with the model where inducer exclusion is affected by a direct interaction between IIIGlc and a non-PTS transport system.  相似文献   

18.
Enzyme IIIGlc of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) of Salmonella typhimurium can occur in two forms: phosphorylated and nonphosphorylated. Phosphorylated IIIGlc (P-IIIGlc) has a slightly lower mobility during sodium dodecyl sulphate/polyacrylamide gel electrophoresis than IIIGlc. In bacterial extracts both phosphoenolpyruvate (the physiological phosphoryl donor of the PTS) as well as ATP can phosphorylate IIIGlc. The ATP-catalyzed reaction is dependent on phosphoenolpyruvate synthase, however, and is due to prior conversion of ATP to phosphoenolpyruvate. The phosphoryl group of phosphorylated IIIGlc is hydrolysed after boiling in sodium dodecyl sulfate but phosphorylated IIIGlc can be discriminated from IIIGlc if treated with this detergent at room temperature. We have used the different mobilities of IIIGlc and P-IIIGlc to estimate the proportion of these two forms in intact cells. Wild-type cells contain predominantly P-IIIGlc in the absence of PTS sugars. In an S. typhimurium mutant containing a leaky ptsI17 mutation (0.1% enzyme I activity remaining) both forms of IIIGlc occur in approximately equal amounts. Addition of PTS sugars such as glucose results, both in wild-type and mutant, in a dephosphorylation of P-IIIGlc. This correlates well with the observed inhibition of non-PTS uptake systems by PTS sugars via nonphosphorylated IIIGlc.  相似文献   

19.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.  相似文献   

20.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIAGlc as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIAGlc leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-β- D -thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIAGlc or were insensitive to inducer exclusion because enzyme IIAGlc could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIAGlc. In a mutant insensitive to enzyme IIAGlc-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIAGlc-mediated catabolite repression which embodies repression by non- PTS carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号