首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rho GTPase-activating protein GTPase regulator associated with focal adhesion kinase-1 (GRAF1) remodels membranes into tubulovesicular clathrin-independent carriers (CLICs) mediating lipid-anchored receptor endocytosis. However, the cell biological functions of this highly prevalent endocytic pathway are unclear. In this article, we present biochemical and cell biological evidence that GRAF1 interacted with a network of endocytic and adhesion proteins and was found enriched at podosome-like adhesions and src-induced podosomes. We further demonstrate that these sites comprise microdomains of highly ordered lipid enriched in GRAF1 endocytic cargo. GRAF1 activity was upregulated in spreading cells and uptake via CLICs was concentrated at the leading edge of migrating cells. Depletion of GRAF1, which inhibits CLIC generation, resulted in profound defects in cell spreading and migration. We propose that GRAF1 remodels membrane microdomains at adhesion sites into endocytic carriers, facilitating membrane turnover during cell morphological changes.  相似文献   

2.
HeLa cells bind horse spleen ferritin when the two are incubated at 0 degrees C. Since the majority of this bound ferritin is located in coated pits, we conclude that the ferritin binds to a specific receptor which takes part in an endocytic cycle. When substrate-attached and well-spread giant HeLa cells are briefly labelled at 0 degrees C with ferritin, ferritin particles are found to be concentrated towards the cell periphery, where they exist largely outside coated pits. This peripheral concentration is a property of circulating (and not just newly synthesized) receptors because it is not affected by prior incubation of giant cells in cycloheximide. However, coated pits are themselves roughly uniformly distributed over the surface of these cells. These results provide evidence that the membrane internalised by coated pits on these cells is returned to the cell surface at the leading edge of the cell. Because of this separation of the sites of endocytosis and exocytosis, a flow of membrane must occur across the cell surface. This flow is composed of lipid plus receptors. The implications of this for capping and for cell spreading are discussed.  相似文献   

3.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

4.
The Notch signaling pathway defines a conserved mechanism that regulates cell fate decisions in metazoans. Signaling is modulated by a broad and multifaceted genetic circuitry, including members of the endocytic machinery. Several individual steps in the endocytic pathway have been linked to the positive or negative regulation of the Notch receptor. In seeking genetic elements involved in regulating the endosomal/lysosomal degradation of Notch, mediated by the molecular synergy between the ubiquitin ligase Deltex and Kurtz, the nonvisual β-arrestin in Drosophila, we identified Shrub, a core component of the ESCRT-III complex as a key modulator of this synergy. Shrub promotes the lysosomal degradation of the receptor by mediating its delivery into multivesicular bodies (MVBs). However, the interplay between Deltex, Kurtz, and Shrub can bypass this path, leading to the activation of the receptor. Our analysis shows that Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation, depending on the Deltex-dependent ubiquitinylation state of the receptor. This activation mode of the receptor emphasizes the complexity of Notch signal modulation in a cell and has significant implications for both development and disease.  相似文献   

5.
The actin cytoskeleton association is required for caspase 8-independent Fas/CD95 receptor internalization, a critical step for an optimal death-inducing signaling complex formation along the endocytic pathway, leading to efficient activation of the caspase cascade and, ultimately, cell death. However, the way in which this initiation phase of Fas receptor signaling is regulated is still unknown. We report herein that, in B cells, upon Fas engagement, the tyrosine phosphatase SHP-1-regulated Vav dephosphorylation, by downmodulating the Fas-ezrin-actin linkage is a fine-tune switch-off mechanism that the cell uses as a way to terminate the receptor internalization, controlling therefore the time and extent of the DISC formation and cell death.  相似文献   

6.
Cell migration: GAPs between membrane traffic and the cytoskeleton   总被引:4,自引:0,他引:4       下载免费PDF全文
de Curtis I 《EMBO reports》2001,2(4):277-281
During cell migration, coordination between membrane traffic, cell substrate adhesion and actin reorganization is required for protrusive activity to occur at the leading edge. Actin organization is regulated by Rho family GTPases and, with a contribution from the endocytic cycle, serves to extend the cell front. The details of the molecular mechanisms that direct membrane traffic at sites of adhesion and rearrange actin at the cell edge are still unknown. However, recent findings show that a number of multi-domain proteins characterized by an ArfGAP domain interact with both actin-regulating and integrin-binding proteins, as well as affecting Rac-mediated protrusive activity and cell migration. Some of these proteins have been shown to localize to endocytic compartments and to have a role in regulating endocytosis. Given the participation of Arf proteins in regulating membrane traffic, one appealing hypothesis is that the ArfGAPs act as molecular devices that coordinate membrane traffic and cytoskeletal reorganization during cell motility.  相似文献   

7.
8.
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.  相似文献   

9.
《The Journal of cell biology》1983,96(6):1824-1828
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle.  相似文献   

10.
Actin is expressed at similar levels but in different locations in bloodstream and procyclic forms of Trypanosoma brucei. In bloodstream forms actin colocalizes with the highly polarized endocytic pathway, whereas in procyclic forms it is distributed throughout the cell. RNA interference demonstrated that in bloodstream forms, actin is an essential protein. Depletion of actin resulted in a rapid arrest of cell division, termination of vesicular traffic from the flagellar pocket membrane leading to gross enlargement of the pocket, loss of endocytic activity and eventually cell death. These results indicate that actin is required for the formation of coated vesicles from the flagellar pocket membrane, which is the first step in the endocytic pathway. Although loss of actin in procyclic cells did not affect growth, the trans region of the Golgi became distorted and enlarged and appeared to give rise to a heterogeneous population of vesicles. However, the flagellar pocket was not affected. These findings suggest that trypanosomes have different functional requirements for actin during the bloodstream and procyclic phases of the life cycle.  相似文献   

11.
Acidification of endocytic vesicles has been implicated as a necessary step in various processes including receptor recycling, virus penetration, and the entry of diphtheria toxin into cells. However, there have been few accurate pH measurements in morphologically and biochemically defined endocytic compartments. In this paper, we show that prelysosomal endocytic vesicles in HepG2 human hepatoma cells have an internal pH of approximately 5.4. (We previously reported that similar vesicles in mouse fibroblasts have a pH of 5.0.) The pH values were obtained from the fluorescence excitation profile after internalization of fluorescein labeled asialo-orosomucoid (ASOR). To make fluorescence measurements against the high autofluorescence background, we developed digital image analysis methods for estimating the pH within individual endocytic vesicles or lysosomes. Ultrastructural localization with colloidal gold ASOR demonstrated that the pH measurements were made when ligand was in tubulovesicular structures lacking acid phosphatase activity. Biochemical studies with 125I-ASOR demonstrated that acidification precedes degradation by more than 30 min at 37 degrees C. At 23 degrees C ligand degradation ceases almost entirely, but endocytic vesicle acidification and receptor recycling continue. These results demonstrate that acidification of endocytic vesicles, which causes ligand dissociation, occurs without fusion of endocytic vesicles with lysosomes. Methylamine and monensin raise the pH of endocytic vesicles and cause a ligand-independent loss of receptors. The effects on endocytic vesicle pH are rapidly reversible upon removal of the perturbant, but the effects on cell surface receptors are slowly reversible with methylamine and essentially irreversible with monensin. This suggests that monensin can block receptor recycling at a highly sensitive step beyond the acidification of endocytic vesicles. Taken together with other direct and indirect estimates of endocytic vesicle pH, these studies indicate that endocytic vesicles in many cell types rapidly acidify below pH 5.5, a pH sufficiently acidic to allow receptor-ligand dissociation and the penetration of some toxin chains and enveloped virus nucleocapsids into the cytoplasm.  相似文献   

12.
High density lipoprotein (HDL) mediates reverse transport of cholesterol from atheroma foam cells to the liver, but the mechanisms of hepatic uptake and trafficking of HDL particles are poorly understood. In contrast to its accepted role as a cell surface receptor, scavenger receptor class B type 1 (SR-BI) is shown to be an endocytic receptor that mediates HDL particle uptake and recycling, but not degradation, in both transfected Chinese hamster ovary cells and hepatocytes. Confocal microscopy of polarized primary hepatocytes shows that HDL particles enter both the endocytic recycling compartment and the apical canalicular region paralleling the movement of SR-BI. In polarized epithelial cells (Madin-Darby canine kidney) expressing SR-BI, HDL protein and cholesterol undergo selective sorting with recycling of HDL protein from the basolateral membrane and secretion of HDL-derived cholesterol through the apical membrane. Thus, HDL particles, internalized via SR-BI, undergo a novel process of selective transcytosis, leading to polarized cholesterol transport. A distinct process not mediated by SR-BI is involved in uptake and degradation of apoE-free HDL in hepatocytes.  相似文献   

13.
The epidermal growth factor receptor (EGFR) is over‐expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl‐interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85–Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.  相似文献   

14.
Growing HepG2 cells contain 50,000 functional surface transferrin-binding sites (Ciechanover, A., Schwartz, A.L., and Lodish, H.F. (1983) Cell 32,267-275) and 100,000 intracellular sites. At saturating concentrations of [59Fe]transferrin, and under conditions in which protein synthesis is blocked, iron uptake is linear for several hours at a rate of 9,500 transferrin molecules/cell/min. Thus, each receptor must recycle a ligand, on the average, each 15.8 min. Surface-bound transferrin is rapidly endocytosed (t1/2 = 3.5 min). All of the iron remains within the cell, while the apotransferrin is rapidly (t1/2 = 5.0 min) secreted into the medium. Previously, we showed (Dautry-Varsat, A., Ciechanover, A., and Lodish, H.F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2258-2262) that exposure of a ferrotransferrin-receptor complex to medium of pH less than 5.0 results in dissociation of iron, but that apotransferrin remains bound to its receptor. If the pH is raised to 7.0, such as would occur when an acidic intracellular vesicle fuses with the plasma membrane, apotransferrin is very rapidly dissociated (t1/2 = 17 s at 37 degrees C) from its receptor. Taken together, these results indicate that transferrin remains bound to its receptor throughout the endocytic cycle. In the present study, we have directly measured all the kinetic parameters involved in the transferrin receptor cycle. They are similar to those of the asialoglycoprotein receptor in the same cell line, and can be described by a simple kinetic model. In the presence of lysosomotropic agents, ferrotransferrin binds to its surface receptor and is internalized normally. However, iron is not dissociated from transferrin, and ferrotransferrin recycles back to the cell surface and is secreted into the medium. We conclude that the low pH in endocytic vesicles is essential for the dissociation of iron from transferrin and its delivery to the cell, but is not required for recycling of transferrin, and presumably of its receptor.  相似文献   

15.
Asialoglycoprotein receptors, responsible for the removal of circulating asialoglycoproteins by the liver, are located in at least two different membrane locations in hepatocytes. Receptors on the cell surface account only for a minor proportion (20-36%), for the majority of receptors in the liver are located intracellularly, mainly in the endocytic membrane networks. An understanding of the basis of receptor distribution and the underlying trafficking of receptors between the hepatocyte's polarised cell surface and the endocytic compartment would be aided if biochemical differences between the receptors in these pools were established. We now show, using three antibodies that recognise the receptor subunits in rat liver (RHL-1, RHL-2 and RHL-3), that the asialoglycoprotein receptors located in the plasma membrane domains and the endocytic compartment differ in oligomeric composition, sialic acid content, and solubility in Triton X-114 using two-phase systems. It is well established that the expression of the asialoglycoprotein receptor is down-regulated in livers regenerating after a partial hepatectomy. We demonstrate that the levels of the receptor subtype that is located mainly in the endocytic compartment (RHL-1, 42 kDa) was elevated in regenerating liver by agents that regulate cAMP production, whereas the levels of the other receptor subtypes remained unchanged. The asialoglycoprotein receptor subtypes that are present in different subcellular locations are thus regulated independently.  相似文献   

16.
Delta/Notch signalling is of major importance for embryonic development and adult life. While endocytosis is often viewed as a way to down-regulate biological signals, ligand and receptor internalization are essential for Notch activation. The development of Drosophila mecanosensory bristles is a powerful model to study Delta/Notch signalling. Following the asymmetric division of bristle precursor cells, Delta ligands and Notch receptors traffic differently in the two daughter cells, leading to directional signal activation. Recent evidence suggests that in addition to differential ligand endocytosis after division, a subpopulation of multivesicular endosomes ensures the directional transport of Delta/Notch already during asymmetric cell division. Biochemical analysis suggests that different phases of endocytic Delta trafficking exert complementary but distinct actions required for ligand recycling, ligand/receptor interaction and ligand-mediated receptor activation, respectively. Finally, novel data suggest that different endosomal compartments may act as Delta/Notch signalling platforms. In this review, we discuss the implications of these novel findings for our cell biological understanding of Delta/Notch signalling.  相似文献   

17.
In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer’s disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer’s disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases.Endocytosis plays many vital roles in normal cell physiology, and as described in this article, endocytic processes can also play significant roles in pathology. Nutrient uptake is one of the essential functions of endocytosis. Two of the best-characterized examples of this are the uptake of cholesterol via the low-density lipoprotein (LDL) receptor (Goldstein and Brown 2009) and the uptake of iron via transferrin and the transferrin receptor (Aisen et al. 2001). Another important role for endocytosis is the regulation of cell-surface expression of membrane proteins, especially receptors and transporters. The balance between recycling or trafficking to storage organelles or to late endosomes and lysosomes (LE/Ly) is often a determining factor in regulating surface expression levels of membrane proteins. Thus, the membrane sorting that occurs in endosomes is important for regulating cell physiology. The pH levels in endosomes play an important role in many functions of endocytosis, including release of iron from transferrin, release of LDL and other ligands from their receptors, and activation of lysosomal hydrolases. As discussed herein, many of these same processes can also play a role in human diseases. A few specific diseases—atherosclerosis, Alzheimer’s disease, and lysosomal storage diseases—are used to illustrate this.  相似文献   

18.
D1 and D2 dopamine receptors are structurally homologous G protein–coupled receptors that serve distinct physiological functions both in neurons and nonneural cell types. We have observed that these receptors are selectively endocytosed in HEK293 cells by distinct dynamin-dependent and -independent mechanisms. Although these endocytic mechanisms operate with similarly rapid kinetics, they differ in their regulation by agonist and deliver D1 and D2 receptors specifically to different primary endocytic vesicles. After this segregation into different endocytic membranes, both D1 and D2 receptors recycle to the plasma membrane. Similar results are observed in Neuro2A neuroblastoma cells coexpressing both receptors at high levels. These findings establish that “classical” dynamin-dependent and “alternative” dynamin-independent endocytic mechanisms differ in their physiological regulation, sort structurally homologous signaling receptors in the plasma membrane, and mediate distinct early endocytic pathways leading to recycling endosomes. Our results also refute the previous hypothesis that dynamin-independent endocytosis targets G protein–coupled receptors selectively to lysosomes, and they suggest a new role of endocytic sorting mechanisms in physically segregating structurally homologous signaling receptors at the cell surface.  相似文献   

19.
20.
MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号