首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
系统生物学——生命科学的新领域   总被引:14,自引:0,他引:14  
系统生物学是继基因组学、蛋白质组学之后一门新兴的生物学交叉学科,代表21世纪生物学的未来.最近,系统生物学研究机构纷纷成立.在研究上,了解一个复杂的生物系统需要整合实验和计算方法.基因组学和蛋白质组学中的高通量方法为系统生物学发展提供了大量的数据.计算生物学通过数据处理、模型构建和理论分析,成为系统生物学发展的一个必不可缺、强有力的工具.在应用上,系统生物学代表新一代医药开发和疾病防治的方向.  相似文献   

2.
高谦 《微生物与感染》2004,27(3):1-2,36
系统生物学是研究生物网络系统的科学,从基因调控网络到细胞、组织和生物体网络,阐明生物系统的构成、动力学及控制方式。系统生物学是以假说驱动的研究策略,在综合现有数据的基础上构建系统模型,根据模型提出可以检测的假说,并设计实验以验证假说,根据实验结果再修正模型,不断重复以得到正确的系统模型。在系统生物学的发展中,细菌作为一个很好的模式生物,将起到重要作用。系统生物学的发展不仅依赖于新技术的发明和应用,更有赖于以新的思路去培养新一代的生物学家。  相似文献   

3.
系统生物学(Systems Biology)的几大重要问题   总被引:1,自引:0,他引:1  
陈铭 《生物信息学》2007,5(3):129-136
近几年来,系统生物学从正式提出到受到普遍关注和研究,对生物学的研究发展起了革命性的变化。主要从系统生物学的发展及其内容进行分析,讨论了生物数据整合,模型建立和模拟分析等几点关键性的问题,并展望了系统生物学的研究。  相似文献   

4.
生物系统的科学与工程是整合系统论、实验、计算和工程方法的交叉学科研究与应用.系统生物学、系统医学,建立在系统科学和数学模型基础上,采用分子、组学生物技术和计算、生物信息技术,以及基因合成与转基因生物技术等研究生物系统原理和规律.系统遗传学与系统生物技术是研究天然与人工生物系统的基因系统与蛋白质系统构成细胞的软件信息与硬件运行系统的机理与方法.合成生物学、系统生物工程也是建立在系统科学和数学模型基础上,应用于生物系统原理设计虚拟计算机信息软件和仿生人工机器硬件、人造工程生物体和基因信息系统等.  相似文献   

5.
传统还原论的研究方法难以解决生物系统层次的问题.系统生物学以假设为驱动,整合不同层次的生物信息建立系统模型,设计干涉实验以检测并修正模型,不断重复实验与修正模型直到模型预测结果与实验结果吻合.本文以大肠埃希菌rRNA合成调控模型的建立为例,详细说明系统生物学的研究策略.  相似文献   

6.
网络药理学与药物发现研究进展   总被引:2,自引:0,他引:2  
将生物学网络与药物作用网络整合,分析药物在网络中与节点或网络模块的关系,由寻找单一靶点转向综合网络分析,就形成了网络药理学.通过系统生物学的研究方法进行网络药理学分析,能够在分子水平上更好的理解细胞以及器官的行为,加速药物靶点的确认以及发现新的生物标志物.这使得我们有可能系统地预测和解释药物的作用,优化药物设计,发现影响药物作用有效性和安全性的因素,从而设计多靶点药物或药物组合.本文综述了网络药理学的新近研究进展,介绍在生物学网络的各个层面上网络药理学的研究和应用,展望网络药理未来的发展方向,对药物发现具有重要意义.  相似文献   

7.
心血管系统生物学研究进展   总被引:1,自引:0,他引:1  
在后基因组时代中,系统生物学是最受关注的领域之一.系统医学生物学是系统生物学的一个重要的分支和组成部分,主要研究的对象是人体、疾病和防治措施.由于心血管疾病突出的重要性,研究人员正致力于心血管系统生物学的研究.本文综述了心血管系统生物学主要的研究课题,总结了用以整合数据的方法和策略,心血管系统模型的类型和应用,建模的工具和标准,未来的发展方向,以及心血管系统生物学可能将面临的一些挑战.  相似文献   

8.
系统生物学采用系统理论和实验生物技术、计算机数学模型等方法整合研究动态生物系统网络.生物系统的结构理论和生物系统技术,研究基因组——生物体复杂系统与细胞分子网络系统的动态结构发生与进化,分析基因组的逻辑程序和人工设计原理.细胞信号传导、基因调控网络、代谢反应链和基因反馈调控的自组织化人工设计和基因、基因链、基因组人工合成等系统生物工程开发,可用于复杂疾病机理分析、药物分子筛选和转基因表达系统的生物反应器、纳米生物计算机等.  相似文献   

9.
罗若愚  李亦学 《生命科学》2007,19(3):301-305
系统生物学倡导利用系统论的思想和方法,从整体的高度分析、研究生命的复杂特性。这一点与实验生物学仅关注某一个或者某一些生物大分子是迥然不同的。系统生物学既要同时考虑多个层次、多种类型的生物信息,还要考虑时间因素。由于系统特性是由于不同组成部分、不同层次间相互作用而“涌现”出的新性质,因此,如果只是针对组成部分或单一层次的分析并不能真正准确地预测整体或高层次的行为。如何通过研究和整合去发现和理解“涌现”出的新的系统性质,是系统生物学面临的一个根本性的挑战。为了应对这一挑战,系统生物学,特别是计算系统生物学必须建立有效的方法,通过整合系统各个层次的信息,建立可反映该系统目前已知或已可测量的性质的物理、数学模型,并通过这样的模型来研究或预测目前还未知晓的系统性状。可以说:建模是系统生物学的最重要的研究手段之一。目前,生命科学的研究正逐步由对单一现象、单一过程的机械论式的描述型研究转向运用高通量实验技术获取海量生物信息,并在这些生物信息基础上建立物理、数学模型,最终通过建模与实验相接合的研究手段来定量阐述生命现象的本质规律。由于建模方法在系统生物学研究中的重要性,本文将对一些主要的建模类型,如定性建模方法;基于约束的建模方法;基于常微分/偏微分方程的定量建模和基于随机微分方程的定量建模方法等等分别予以简要介绍。  相似文献   

10.
作为功能基因组学中重要的组成部分,基因表达谱在生物学、医学和药物研发等多个领域发挥着重要作用.特别是随着精准医疗概念的提出,整合多组学数据用于个性化医疗是未来的发展趋势.本文从基因表达谱的基本概念出发,重点介绍面向药物发现的基因表达谱分析方法,即基于关联图谱的方法、基于基因调控网络的方法和基于多组学数据整合的方法.系统整理了各种方法的研究进展,特别是在抗癌药物研发领域的最新进展,为利用基因表达谱数据进行药物研发提供方法借鉴.  相似文献   

11.
药物从研发到临床应用需要耗费较长的时间,研发期间的投入成本可高达十几亿元。而随着医药研发与人工智能的结合以及生物信息学的飞速发展,药物活性相关数据急剧增加,传统的实验手段进行药物活性预测已经难以满足药物研发的需求。借助算法来辅助药物研发,解决药物研发中的各种问题能够大大推动药物研发进程。传统机器学习方法尤其是随机森林、支持向量机和人工神经网络在药物活性方面能够达到较高的预测精度。深度学习由于具有多层神经网络,模型可以接收高维的输入变量且不需要人工限定数据输入特征,可以拟合较为复杂的函数模型,应用于药物研发可以进一步提高各个环节的效率。在药物活性预测中应用较为广泛的深度学习模型主要是深度神经网络(deep neural networks,DNN)、循环神经网络(recurrent neural networks,RNN)和自编码器(auto encoder,AE),而生成对抗网络(generative adversarial networks,GAN)由于其生成数据的能力常常被用来和其他模型结合进行数据增强。近年来深度学习在药物分子活性预测方面的研究和应用综述表明,深度学习模型的准确度和效率均高于传统实验方法和传统机器学习方法。因此,深度学习模型有望成为药物研发领域未来十年最重要的辅助计算模型。  相似文献   

12.
高通量测序技术的快速发展催生了涵盖各层次细胞生命活动的组学数据,如转录组学数据、蛋白质组学数据和互作组学数据等。同时,全基因组代谢网络模型在不断完善和增多。整合组学数据,对生物细胞的代谢网络进行更深入的模拟分析成为目前微生物系统生物学研究的热点。目前整合转录组学数据进行全基因组代谢网络分析的方法主要以流量平衡分析(FBA)为基础,通过辨识不同条件下基因表达的变化,进而优化目标函数以得到相应的流量分布或代谢模型。本文对整合转录组学数据的FBA分析方法进行总结和比较,并详细阐述了不同方法的优缺点,为分析特定问题选择合适的方法提供参考。  相似文献   

13.
21世纪生命科学将因系统生物学和合成生物学而进入新的发展时期,系统生物学使生命科学由实验科学转变为定量、预测的系统科学,而合成生物学是在系统生物学基础上进一步把生命科学推向工程科学.把系统生物学研究的天然元件、模块、网络、系统转变为工程化的元件、模块、网络用以构建具备各种功能的生物装置和生物体。  相似文献   

14.
系统生物学时代,各种高通量组学技术产生了大量数据。一些旨在挖掘数据和整合信息的计算机建模技术也逐渐用于系统水平定量分析细胞代谢。模型有助于指导实验设计,实验结果反过来检验和优化模型,虚实结合,有利于在系统层面认识复杂的代谢过程。根据这些信息,可以设计、优化工业微生物代谢特征,高表达目标代谢物。本文综述了系统生物技术在工业(药用)微生物育种和高通量筛选中的最新应用进展。  相似文献   

15.
郑小梅  郑平  孙际宾 《生物工程学报》2019,35(10):1955-1973
工业生物技术是以微生物细胞工厂利用可再生的生物原料来生产能源、材料与化学品等的生物技术,在解决资源、能源与环境等问题方面起着越来越重要的作用。系统生物学是全面解析微生物细胞工厂及其发酵过程从"黑箱"到"白箱"的重要研究方法。系统生物学借助基因组、转录组、蛋白质组、代谢组以及代谢流组等多组学数据,可解析微生物细胞工厂在RNA、蛋白与代谢物等不同水平上的变化规律与调控机制。目前,系统生物学在微生物细胞工厂的设计创建与发酵工艺优化中起着越来越重要的指导作用,许多成功应用实例不断涌现,推动着工业生物技术的快速发展。文中重点综述基因组、转录组、蛋白质组、代谢组与代谢流组以及基因组规模的网络模型等各组学技术的最新发展及其在工业生物技术尤其是菌株改造与发酵优化中的应用,并就工业生物技术中系统生物学的未来发展方向进行展望。  相似文献   

16.
面对生命复杂性的巨大挑战,研究者提出了整合基因组、蛋白质组和代谢组等多组学数据,以及整合从分子到生理病理表型数据的系统生物学研究策略,利用该策略建立以个体为中心的多层级人类疾病知识整合数据库,并在此基础上形成可用于疾病精确分类的生物医学知识网络,进而发展出未来能够为每个个体提供最好医疗护理的精准医学。  相似文献   

17.
全新结构药物的研发存在周期长、耗资大、风险高的问题.通过各种技术预测已有药物的新适应症,即药物重定位,可以缩短药物研发时间、降低研发成本和风险.由于疾病种类和已知药物的数量繁多,完全通过实验筛选已知药物的新用途仍然具有很高的成本.随着组学和药物信息学数据的积累,药物重定位进入到了理性设计和实验筛选相结合的阶段,药物重定位的计算预测已经成为计算生物学和系统生物学的重要研究方向.本文将目前药物重定位计算分析的策略归纳为药物-靶标关系分析、药物-药物关系分析和药物-疾病关系分析,对已报道的技术方法及其成功应用实例进行了综述.  相似文献   

18.
李宏 《生物信息学》2012,10(1):55-60
代谢工程是近年来发展起来的新技术,随着各种组学技术的发展,高通量数据整合方法用于分析细胞的代谢网络,改造代谢途径,以提高目标产物的产量。本文就代谢工程的发展状况,基因组尺度的分析技术,以及代谢工程策略进行了综述。分析了生物信息学和系统生物学方法在代谢途径构建和代谢网络分析中的作用,并就存在的问题和可能的解决途径进行了阐述。  相似文献   

19.
代谢组学是功能基因组学和系统生物学研究不可或缺的重要组成部分,是通过考察生物体系受刺激或扰动前后代谢产物的动态变化,研究生物体系的代谢网络的一种技术。应用代谢组学高通量、整体性的研究思路来理解中药的作用过程,与中医药的整体、辩证观点是一致的。代谢组学已成为中药研发的一个重要途径和手段,为中药现代化在技术上提供巨大支持,有助于为中药现代化研究寻找更多有效的突破口。本文在前人综述的基础上,着重概括了中药代谢组学研究方法近3年来在中药有效物质基础和作用机制、药物作用模型的鉴别和确证、毒性研究和中药安全性评价等方面的应用情况,同时展望了代谢组学方法所面临的机遇和挑战。  相似文献   

20.
基因逻辑网络研究进展   总被引:1,自引:0,他引:1  
海量生物数据的涌现,使得通过数据分析和理论方法探索生物机理成为理论生物学研究的重要途径.特别是对于基因的复杂的功能系统,建立基因网络这种理论方法的意义更为突出.Bowers在蛋白质相互作用的分析中引入了高阶逻辑关系,从而建立了系统发生谱数据的逻辑分析(LAPP)的系统方法.LAPP和通常建立模型的方法不同,它给出了一个从复杂网络的元素(或部件)的表达数据出发,通过逻辑分析,找到元素之间逻辑关联性的建模方法.这种方法能够从蛋白质表达谱数据出发,利用信息熵的算法发现两种蛋白质对一种蛋白质的联合作用,对于发现蛋白质之间新的作用机理有重要意义.由于涉及功能的基因组通常是一个大的群体构成的系统,因此LAPP方法也是一个生成复杂的基因逻辑网络的方法.基因逻辑网络的建立,方便实现通过逻辑调控进行基因调控的目的.这种方法可以应用在很多方面,如物种进化、肿瘤诊疗等等.系统阐述并分析了LAPP方法,并指出其在方法和应用方面的新进展以及评述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号