首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
蛋白质-蛋白质相互作用及其抑制剂研究进展   总被引:1,自引:0,他引:1  
赵亚雪  唐赟 《生命科学》2007,19(5):506-511
蛋白质-蛋白质相互作用在细胞活动和生命过程中扮演着非常重要的角色。基因调节、免疫应答、信号转导、细胞组装等等都离不开蛋白质-蛋白质的相互作用。近几年,靶向蛋白质-蛋白质相互作用及其抑制剂研究也逐渐成为研究的热点;但是蛋白质复合物相互作用界面的一些特点和性质,如相互作用界面较大、结合界面较为平坦等,使蛋白质-蛋白质相互作用及其抑制剂研究充满了挑战。本文主要总结了蛋白质-蛋白质相互作用界面的一些性质和特点,分析了界面特性与其抑制剂设计的关系,并讨论了蛋白质-蛋白质相互作用的理论预测方法及其抑制剂的类型和特点,最后又通过实例说明了如何进行蛋白质-蛋白质相互作用抑制剂的设计。  相似文献   

2.
FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用   总被引:10,自引:2,他引:8  
简要综述了FRET方法在活细胞生理条件下研究蛋白质-蛋白质间相互作用方面的最新进展.蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法,例如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程.荧光共振能量转移(fluorescence resonance energy transfer, FRET)是近来发展的一项新技术,此项技术的应用,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究,提供一个非常便利的条件.  相似文献   

3.
蛋白质为行使其生物学功能,通常与其它蛋白质发生相互作用,而这些相互作用的区域被称为"热点"区域,某些异常的相互作用可能会导致一些疾病的产生,而某些特定结构的小分子药物可以抑制这些相互作用,进而达到治疗疾病的目的。文章综述了蛋白质-蛋白质相互作用(protein-protein interactions,PPIs)中"热点"区域的构成、"热点"区域的变异与疾病之间的关系、"热点"区域的预测,以及几个"热点"区域与药物小分子的相互作用,为开发调节PPIs的小分子药物提供参考依据。  相似文献   

4.
酵母杂交体系包括双杂交、反向双杂交和三杂交等体系。双杂交作为一种新兴的体内研究蛋白质之间相互作用的方法,已经得到了广泛的应用。而反向双杂交和三杂交系统是在双杂交基础上发展起来的两种新技术。反向双杂交除了筛选突变株,以获取蛋白质结合的信息外,还能发现可导致已知蛋白质间特异相互作用发生解离的肽类或其他小分子物质,进一步分析蛋白质间作用位点、调控。三杂交系统则在蛋白质与小分子配基之间以及多种蛋白质之间相  相似文献   

5.
P-LISA技术     
原位邻近式连接分析(proximity ligation in situ assay,P-LISA)是一种用来研究蛋白质-蛋白质相互作用的新方法。该方法能够对原位、瞬时、微弱的蛋白质-蛋白质相互作用进行定量分析和亚细胞定位,在药物研发和临床诊断中将有着重要的应用价值。  相似文献   

6.
酵母三杂交系统的原理和应用   总被引:1,自引:0,他引:1  
彭丹妮  黄静  吴自荣 《生命科学》2007,19(4):461-464
酵母双杂交系统自出现以来,广泛用于研究蛋白质之间的相互作用,它是一种具有高灵敏度的研究蛋白质之间关系的技术.在酵母双杂交系统基础上发展的酵母三杂交系统将应用范围扩展到蛋白质-蛋白质、蛋白质-RNA、蛋白质-小分子化合物等更广阔的研究领域.本文着重介绍酵母三杂交系统的原理、应用及局限性.  相似文献   

7.
预测蛋白质间相互作用的生物信息学方法   总被引:8,自引:0,他引:8  
后基因组时代的研究模式,已从原来的序列-结构-功能转向基因表达-系统动力学-生理功能。建立蛋白质间相互作用的完全网络,即蛋白质相互作用组(interactome),将有助于从系统角度加深对细胞结构和功能的认识,并为新药靶点的发现和药物设计提供理论基础。一系列系统分析蛋白质相互作用的实验方法已经建立,近年来,出现了多种预测蛋白质相互作用的生物信息学方法,这些方法不仅是对传统实验方法的有价值的补充,而且能够扩展实验方法的预测范围;同时,在开发这些方法的过程中建立了一些重要的分子进化和分子生物学慨念。本文综述了9种生物信息学方法的原理、方法评估、存在的问题.并分析了这个领域的发展前景。  相似文献   

8.
热蛋白质组学分析(thermal proteome profiling,TPP)是细胞热漂移测定(cellular thermal shift assay,CETSA)与定量质谱(quantitative mass spectrometry,MS)的结合,所以也称为MS-CETSA。热蛋白质组学分析通过测量不同加热温度下细胞或细胞裂解物中可溶蛋白的含量来确定整个蛋白质组的稳定性。蛋白质可以在与药物或代谢物等小分子、核酸或其他蛋白质相互作用或在翻译后修饰时改变其热稳定性,而热蛋白质组学分析可以根据有无配体结合蛋白质的热稳定性差异来确定靶蛋白。目前热蛋白质组学分析已成功应用于识别药物的靶点和脱靶点,探究蛋白质-代谢物和蛋白质-蛋白质的相互作用。总体上,国内对这个技术的了解仍然欠缺,对此,文中对热蛋白质组学分析的原理、方法、应用以及优势与局限性进行了综述。  相似文献   

9.
蛋白质的相关信息一直是生命科学研究的重点,其中药物小分子与蛋白质的相互作用成为近年来的研究热点。平衡透析法是研究药物小分子与蛋白质相互作用的经典方法,通过该方法可以定量的讨论药物小分子与蛋白质结合的结合数量、结合常数。就平衡透析法用于分析药物小分子与蛋白质的作用方式、作用模型及国内外研究进展进行综述。  相似文献   

10.
介绍了酵母三杂交系统的原理、应用、前景和存在的不足.在酵母双杂交基础上发展起来的酵母三杂交系统,将应用范围扩大到研究蛋白质-蛋白质、蛋白质-RNA、蛋白质-小分子药物间的相互作用.  相似文献   

11.
Maes M  Loyter A  Friedler A 《The FEBS journal》2012,279(16):2795-2809
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.  相似文献   

12.
Continuing investigations into protein-protein interactions have revealed their key role in regulating a wide range of cellular processes. Although efforts to modulate these interactions are more challenging and much less mature than work on conventional drug discovery pathways, significant progress has been made on several fronts. Highlights of recent advances involve peptide-based inhibitors, including sidechain and backbone cross-linked agents, and peptide scaffolds, as well as small-molecule inhibitors of protein-protein interactions, such as those containing terephthalate or bis-imidazole scaffolds.  相似文献   

13.
MOTIVATION: Protein-protein interactions (PPIs) are a promising, but challenging target for pharmaceutical intervention. One approach for addressing these difficult targets is the rational design of small-molecule inhibitors that mimic the chemical and physical properties of small clusters of key residues at the protein-protein interface. The identification of appropriate clusters of interface residues provides starting points for inhibitor design and supports an overall assessment of the susceptibility of PPIs to small-molecule inhibition. RESULTS: We extract Small-Molecule Inhibitor Starting Points (SMISPs) from protein-ligand and protein-protein complexes in the Protein Data Bank (PDB). These SMISPs are used to train two distinct classifiers, a support vector machine and an easy to interpret exhaustive rule classifier. Both classifiers achieve better than 70% leave-one-complex-out cross-validation accuracy and correctly predict SMISPs of known PPI inhibitors not in the training set. A PDB-wide analysis suggests that nearly half of all PPIs may be susceptible to small-molecule inhibition.  相似文献   

14.
It is generally difficult to block protein-protein interactions with small-molecule drugs. A novel pharmaceutical development strategy to block protein interactions is emerging: targeted covalent modification to sterically block interactions. By this approach, compounds first interact non-covalently with a specific target protein. This interaction juxtaposes a weakly reactive group of the drug with a target amino acid sidechain, which then react by virtue of their high local concentration.  相似文献   

15.
Understanding the structural basis of protein-protein interactions (PPIs) may shed light on the organization and functioning of signal transduction and metabolic networks and may assist in structure-based design of ligands (drugs) targeting protein-protein interfaces. The residues at the bimolecular interface, designated as the hot spots, contribute most of the free binding energy of PPI. To date, there is no conclusive atomistic explanation for the unique functional properties of the hot spots. We hypothesized that backbone compliance may play a role in protein-protein recognition and in the mechanism of binding of small-molecule compounds to protein surfaces. We used a steered molecular dynamics simulation to explore the compliance properties of the backbone of surface-exposed residues in several model proteins: interleukin-2, mouse double minute protein 2 and proliferating cell nuclear antigen. We demonstrated that protein surfaces exhibit distinct patterns in which highly immobile residues form defined clusters ("stability patches") alternating with areas of moderate to high mobility. These "stability patches" tend to localize in functionally important regions involved in protein-protein recognition. We propose a mechanism by which the distinct structural organization of the hot spots may contribute to their role in mediating PPI and facilitating binding of structurally diverse small-molecule compounds to protein surfaces.  相似文献   

16.
There has been much progress in the discovery of small, organic molecules that inhibit protein-protein interactions, particularly in the field of cancer. Tubulin polymerization represents a classic target whose function can be allosterically modulated by small molecules. Several protein-protein complexes that regulate apoptosis, or programmed cell death, appear to be particularly amenable to inhibition by small molecules, and recently described compounds have helped to characterize Bcl-2, MDM2 and XIAP as drug targets. Additionally, small-molecule antagonists have recently been described for several new targets, including Rac1-Tiam1, beta-catenin-T cell factor (Tcf), and Sur-2-ESX. Not only is the list of protein-protein inhibitors growing, but the inhibitors themselves are moving closer to treating disease.  相似文献   

17.
Zhang C  Lai L 《Biochemical Society transactions》2011,39(5):1382-6, suppl 1 p following 1386
Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein-protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein-ligand interactions, protein-protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein-protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein-protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.  相似文献   

18.
Although a very useful guideline for orally bioavailable small-molecule drug design, the 'rule-of-five' (also known as 'Lipinski's rule of drug-likeness') has to some extent been overemphasized. Firstly, only 51% of all FDA-approved small-molecule drugs are both used orally and comply with the 'rule-of-five'. This does not even include the increasing number of biologicals of which several have reached 'blockbuster' status. Secondly, it does not cover natural product and semisynthetic natural product drugs, which constitute over one-third of all marketed small-molecule drugs. A more balanced and programmatic approach to drug discovery should be more productive than to rely on an overemphasis of 'rule-of-five' compliance. Rather it should consider proactively the development of parenteral drugs in parallel to oral drugs and to consider the development of therapeutic antibodies in parallel to small-molecule drugs. These are particularly relevant for efforts against 'first-in-class' and/or particularly challenging targets such as proteases and those involving protein-protein interactions. In addition, more effort should be invested in natural product research. Emerging novel technologies such as synthetic biology (genetic engineering of living organisms to produce small-molecule therapeutics) may address several challenging issues of natural product-based drug discovery including synthetic feasibility and ligand efficiency.  相似文献   

19.
20.
The modulation of protein-protein interactions (PPIs) by small drug-like molecules is a relatively new area of research and has opened up new opportunities in drug discovery. However, the progress made in this area is limited to a handful of known cases of small molecules that target specific diseases. With the increasing availability of protein structure complexes, it is highly important to devise strategies exploiting homologous structure space on a large scale for discovering putative PPIs that could be attractive drug targets. Here, we propose a scheme that allows performing large-scale screening of all protein complexes and finding putative small-molecule and/or peptide binding sites overlapping with protein-protein binding sites (so-called "multibinding sites"). We find more than 600 nonredundant proteins from 60 protein families with multibinding sites. Moreover, we show that the multibinding sites are mostly observed in transient complexes, largely overlap with the binding hotspots and are more evolutionarily conserved than other interface sites. We investigate possible mechanisms of how small molecules may modulate protein-protein binding and discuss examples of new candidates for drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号