首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trained condition is associated with alterations in fluid regulation. In attempt to elucidate mechanisms responsible for these differences, resting, postexercise (maximal treadmill exercise of 8-13 min duration), and recovery measurements were made in seven trained (mean peak O2 consumption was 60.5 +/- 1.6 ml.kg-1.min-1) and seven untrained (mean peak O2 consumption was 40.7 +/- 1.7 ml.kg-1.min-1) male subjects. Samples were obtained by venipuncture with subjects seated. No significant differences in resting plasma osmolality (Osm), sodium, potassium, antidiuretic hormone (ADH), aldosterone, renin activity, or atrial natriuretic factor were found between groups. Maximal exercise produced significant increases in all of the above variables. Values immediately postexercise were similar between groups except for plasma Osm and sodium, which were significantly higher in the untrained group. Despite a reduction in plasma volume of equal magnitude in both groups, trained subjects demonstrated an increase in vascular proteins and mean corpuscular volume during exercise. This increase in plasma protein may be an important initiating factor responsible for the elevated plasma volume after 1-h recovery from exercise in the trained group. Lastly, similar ADH responses despite lower Osm in trained subjects may indicate that training increases the sensitivity of ADH to osmotic stimulation.  相似文献   

2.
The influence of work intensity and duration on the white blood cell (WBC), lymphocyte (L) and platelet (P) count response to exercise was studied in 16 trained subjects (22 +/- 5.4 years, means +/- SD). They performed three cyclo-ergospirometric protocols: A) 10 min at 150 W followed by a progressive test (30 W/3 min) till exhaustion; B) constant maximal work (VO2max); C) a 45 min Square-Wave Endurance Exercise Test (SWEET), (n = 5). Arterial blood samples were taken: at rest, submaximal and maximal exercise in A; maximal exercise in B; 15th, 30th and 45th min in the SWEET. Lactate, [H+], PaCO2, PaO2, [Hct], Hb, cortisol, ACTH, total platelet volume (TPV), total blood red cell (RBC), WBC, L and P were measured. At 150 W, WBC, L, P, and TPV increased. VO2max did not differ between A and B, but a difference was found in total exercise time (A = 25 +/- 3 min; B = 7 +/- 2 min, p less than 0.001). In A, at VO2max, the increase was very small for Hct, [Hb], and RBC (10%), in contrast with large changes for WBC (+93%), L (+137%), P (+32%), TPV (+35%), [H+] (+39%), lactate (+715%), and ACTH (+95%). At VO2max there were no differences in these variables between A and B. During the SWEET: WBC, L, P, TPV and ACTH increased at the 15th min as much as in VO2max, but no difference was observed between the 15th, 30th and 45th min, except for ACTH which continued to rise; the lactate increase during the SWEET was about half (+341%) the value observed at VO2max, and [H+] did not vary with respect to values at rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration [( ANP]) and furthermore to compare ANP with the effect on aldosterone concentration [( Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (-28.5%, SEM 3.7% after 30 min, P less than 0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV -13.1%, SD 3.6%, sodium +6.2 mmol.l-1, SD 2.7, Osm +18.4 mosmol.kg H2O-1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].  相似文献   

4.
To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.  相似文献   

5.
The effects of euhydration (Eh) and light (Dh1) and moderate (Dh2) dehydrations on plasma prolactin (PRL) levels were studied in 5 young male volunteers at rest and during exercise to exhaustion (50% of VO2max) in a warm environment (Tdb = 35 degrees C, rh = 20-30%). Light and moderate dehydrations (loss of 1.1 and 1.8% body respectively) were obtained before exercise by controlled hyperthermia. Compared to Eh, time for exhaustion was reduced in Dh1 and Dh2 (p less than 0.01) and rectal temperature (Tre) rose faster in Dh2 (p less than 0.05). Both venous plasma PRL and norepinephrine (NE) increased during exercise at any hydration level (p less than 0.05). Plasma PRL reached higher values after 40 and 60 min in Dh2 and Dh1 (p less than 0.05). Plasma NE values were higher in Dh2 at rest and at the 40th min during exercise (p less than 0.05). Plasma PRL was linearly correlated to Tre and plasma NE (p less than 0.001) but unrelated to plasma volume variation and osmolality. Our results provide further evidence for the major effect of body temperature in exercise-induced PRL changes. Moreover, the plasma PRL-NE relationship suggests that these changes may result from central noradrenergic activation.  相似文献   

6.
7.
The aim of this study was to evaluate serum and saliva adrenocortical hormones and their relationships at rest and during submaximal exercise and recovery in 9 obese diabetic middle-aged men (BMI: 35.2 ± 1.6 kg/m (2)). Blood and saliva samples were taken at rest, every 10 min of a 30-min cycling exercise at 70% of maximal heart rate, and after 10 min of recovery in order to analyze cortisol, dehydroepiandrosterone sulfate (DHEA-S) and dehydroepiandrosterone (DHEA). Serum and saliva cortisol increased significantly during recovery (p<0.05), but no significant difference was observed between the rest, exercise, and recovery DHEA-S and DHEA concentrations. A strong correlation was found at rest between both serum and saliva cortisol (r=0.72, p<0.001) and DHEA-S and DHEA (r=0.93, p<0.001). Serum DHEA-S and saliva DHEA remained strongly correlated during and after the submaximal exercise (r=0.81, p<0.001), whereas a weaker but still significant relationship was observed between serum and saliva cortisol during and after the exercise (r=0.52, p<0.001). In conclusion, these results suggest that saliva adrenocortical hormones, and especially saliva DHEA, may offer a practical surrogate for serum concentrations during both rest and exercise in obese diabetic men.  相似文献   

8.
To investigate mechanisms that may be involved in the prolongation of exercise performance with body cooling hypothalamic (Thy), rectal (Tre), and exercising muscle (Tm) temperatures, as well as the heart rate, respiratory rate, blood lactic acid concentration ( [LA] ), and plasma osmolality (Osm) were measured in five dogs during exhaustive treadmill exercise at an ambient temperature (Ta) of 22 +/- 1 degree C without cooling (control) and with external cooling by use of ice packs. In both series of experiments, dehydration of animals was prevented. Compared with exercise with noncooling, exercise with cooling resulted in 1) increased exercise duration from 90 +/- 14 to 145 +/- 15 min (62%, P less than 0.05); 2) attenuated increases in Thy, Tre, and Tm; 3) decreased respiratory and heart rates; and 4) lowered LA. Significant negative correlations were found between both Tm and delta Tm attained at 60 min of the run and time of exercise until exhaustion (r = -0.72 and -0.74, respectively; P less than 0.02). This work failed to differentiate clearly changes or equilibrium levels of brain, core, or muscle temperature as separate factors affecting work tolerance. However, the inverse relationship between Tm reached at 60 min of the run (in both experiments) and the total duration of exercise indicates that sustained muscle hyperthermia may largely contribute to limitation of working ability.  相似文献   

9.
Lifestyle habits, such as exercise, may significantly influence risk of major vascular thrombotic events. The risk of primary cardiac arrest has been shown to transiently increase during vigorous exercise, whereas regular moderate-intensity exercise is associated with an overall reduced risk of cardiovascular diseases. What are the mechanisms underlying these paradoxical effects of vigorous exercise versus exercise training on thrombotic modification? This review analyzes research regarding effects and their underlying mechanisms of acute exercise, endurance training, and deconditioning on platelets, coagulation, and fibrinolysis. Evidence suggests that (i) light, acute exercise ( < or = 49% VO(2 max)) does not affect platelet reactivity and coagulation and increases fibrinolytic activity; (ii) moderate, acute exercise (50 to approximately 74% VO(2 max)) suppresses platelet reactivity and enhances fibrinolysis, which remains unchanged in the coagulation system; and, (iii) strenuous, acute exercise ( > or = 75% VO(2 max)) enhances both platelet reactivity and coagulation, simultaneously promoting fibrinolytic activity. Therefore, moderate exercise is likely a safe and effective exercise dosage for minimizing risk of cardiovascular diseases by inducing beneficial anti-thrombotic changes. Moreover, moderate-intensity exercise training reduces platelet reactivity and enhances fibrinolysis at rest, also attenuating enhanced platelet reactivity and augmenting hyper-fibrinolytic activity during strenuous exercise. However, these favorable effects of exercise training on thrombotic modification return to a pre-training state after a period of deconditioning. These findings can aid in determining appropriate exercise regimes to prevent early thrombotic events and further hinder the cardiovascular disease progression.  相似文献   

10.
Changes of osmolality (Osm) were measured by freezing-point determination in true plasma of 10 healthy subjects. This was done after equilibration with CO2 (0.5-10.0%), after the addition of lactic acid (10 and 20 mmol/l), and after deoxygenation. The graph for the dependence of Osm on CO2 partial pressure (PCO2) in oxygenated blood resembles the classical CO2 absorption curve. The increase of Osm with PCO2 (approximately 0.2 mosmol . kg H2O-1 . Torr-1) is almost as great as the increase in dissolved CO2 plus bicarbonate (HCO-3). Addition of lactic acid shifts the curve upward by only 0.6 mosmol/mmol because of displacement of HCO-3. Deoxygenation has no significant effect at constant PCO2 despite an increase in [HCO-3]. This is probably due to the binding of 2,3-diphosphoglycerate to hemoglobin. It can be seen in the Osm-pH diagram that differences between CO2 and lactic acid titration largely disappear. For each lactic acid concentration there is a linear dependence corresponding to the linear [HCO-3]-pH relation in plasma. At constant pH, Osm increases after deoxygenation. The observed in vitro relation might explain part of the osmolality increase during physical exercise.  相似文献   

11.
Four women were studied at 0400 h and 1600 h to determine if their hormonal and hemodynamic responses to exercise varied with the circadian cycle. Esophageal temperature was measured during rest and exercise (60% peak VO2; 30 min) in a warm room (Ta = 35 degrees C; PH2O = 1.7 kPa). Venous blood samples were drawn during rest and exercise and hemoglobin concentration (Hb), hematocrit (Hct), plasma osmolality (Posm), plasma protein concentration (Pp), colloid osmotic pressure (COP), plasma renin activity (PRA), cortisol, aldosterone, norepinephrine (NE) and epinephrine (E) were determined. Changes in plasma volume (PV) were estimated from changes in Hb and Hct. The relative hemoconcentration (-11.2%) was similar at 0400 h and 1600 h, but the absolute PV was smaller at 1600 h than at 0400 h (p = 0.03). The responses of Posm, Pp and COP to exercise were unaffected by time of day. Although PRA was not different at the two times of day, PRA was 244% greater during exercise at 1600 h, but only 103% greater during exercise at 0400 h. The normal circadian rhythms in plasma aldosterone (p = 0.043) and plasma cortisol (p = 0.004) were observed. Plasma aldosterone was 57% greater during exercise, while plasma cortisol did not change. The change in E and NE was greater at 0400 h, but this was due to the lower resting values of the catecholamines at 0400 h. These data indicate that time of day generally did not affect the hormonal or hemodynamic responses to exercise, with the exception that PRA was markedly higher during exercise at 1600 h compared to 0400 h.  相似文献   

12.
Patients with thrombocythaemia due to myeloproliferative disorders (n = 21), with secondary thrombocytosis of various origin (n = 16), and a control group of healthy donors (n = 20) were investigated with respect to the aggregation behaviour and the total calcium content of blood platelets. The calcium content was significantly lower in both groups of patients as compared to controls (2 p less than 0.001). In 16 of 21 patients with myeloproliferative disorders platelet rich plasma did not respond to epinephrine (15 mumol/l), a concentration which induced at least weak aggregation in 14 of 16 patients with secondary thrombocytosis and also in healthy subjects. In patients with thrombocythaemia the mean extent of aggregation induced by epinephrine, collagen or adenosin diphosphate was significantly lower as compared to controls (2 p less than 0.001).  相似文献   

13.
Five healthy male subjects exercised for 3 min at a workload equivalent to 100% VO2max on two separate occasions. Each exercise test was performed on an electrically braked cycle ergometer after a four-day period of dietary manipulation. During each of these periods subjects consumed either a low carbohydrate (3 +/- 0%, mean +/- SD), high fat (73 +/- 2%), high protein (24 +/- 3%) diet (FP) or a high carbohydrate (82 +/- 1%), low fat (8 +/- 1%) low protein (10 +/- 1%) diet (CHO). The diets were isoenergetic and were assigned in a randomised manner. Muscle biopsy samples (Vastus lateralis) were taken at rest prior to dietary manipulation, immediately prior to exercise and immediately post-exercise for measurement of pH, glycogen, glucose 6-phosphate, fructose 1,6-diphosphate, triose phosphates, lactate and glutamine content. Blood acid-base status and selected metabolites were measured in arterialised venous samples at rest prior to dietary manipulation, immediately prior to exercise and at pre-determined intervals during the post-exercise period. There was no differences between the two treatments in blood acid-base status at rest prior to dietary manipulation; immediately prior to exercise plasma pH (p less than 0.01), blood PCO2 (p less than 0.01), plasma bicarbonate (p less than 0.001) and blood base-excess (p less than 0.001) values were all lower on the FP treatment. There were no major differences in blood acid-base variables between the two diets during the post-exercise period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We evaluated the effects of a large (920 cal) liquid carbohydrate (CHO) load on the maximum exercise capacity of 18 patients with chronic airflow obstruction [forced expiratory volume at at 1 s (FEV1) = 1.27 +/- 0.48 liters; FEV1/forced vital capacity = 0.41 +/- 0.11]. Patients underwent duplicate incremental cycle ergometer exercise tests to a symptom-limited maximum following CHO and a liquid placebo in single-blind fashion. Expired gas measurements were obtained during each power output. In 12 patients arterial blood gases were measured, and in six patients venous blood was obtained for measurement of glucose, electrolytes, and osmolality. With CHO, the maximum power output decreased from 86 +/- 30 to 76 +/- 31 W (P less than 0.001), whereas the ventilation at exhaustion was nearly identical (47.6 +/- 13.2 and 46.8 +/- 12.5 l/min). Arterial partial pressure of CO2 (PaCO2) at exhaustion decreased (P less than 0.025), arterial partial pressure of O2 (PaO2) increased (P less than 0.01), and the ventilatory equivalent for CO2 (VE/VCO2) increased (P less than 0.005) with CHO. At equivalent power outputs, CHO resulted in significant increases in VE (P less than 0.001) and VCO2 (P less than 0.001); PaCO2 was unchanged, whereas PaO2 increased (P less than 0.01). CHO increased the serum glucose at rest and during exercise. No changes in serum osmolality or electrolytes occurred during exercise following CHO. After CHO loading, the majority of patients appeared to reach their limiting level of ventilation at a lower power output. In contrast, there was no significant difference in the mean maximum power output with CHO in six normal control subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Vascular thrombosis is a harbinger of failure in microsurgery. However, there is still controversy regarding the correlation of the complications of thrombocytosis and thrombosis. Some evidence indicates that patients with elevated platelet counts tend to have a higher flap failure rate, and surgeons usually hesitate to operate on patients with thrombocytosis. Nevertheless, the authors have experienced successful free tissue transfer in seven patients with thrombocytosis resulting from traumatic splenectomy or multiple trauma. On the basis of clinical observation, the authors investigated whether reactive thrombocytosis contributes to the patency of a microvascular anastomosis. In a rodent splenectomy-induced thrombocytosis model (n = 40), stable reactive thrombocytosis occurred after postoperative days 5 to 10, with the peak on postoperative day 7. Femoral artery division and reanastomosis was performed in rats with or without splenectomy-induced thrombocytosis, and vascular patency was assessed. Platelet counts and platelet activation were studied in correlation to microvascular patency. Platelet activation as demonstrated by CD62P expression on platelets was not significantly different between rats with and without thrombocytosis (6.41 +/- 0.95 percent versus 4.51 +/- 0.55 percent, respectively; p = 0.089). As immature platelets were not increased (2.86 +/- 0.33 percent versus 1.99 +/- 0.32 percent, p = 0.074), it seems that the splenectomy-induced thrombocytosis is the result of redistribution of platelets instead of an increase in bone marrow production. There were no significant differences in the patency rates or perfusion units of femoral artery after arterial anastomosis between rats with and without thrombocytosis (90 percent and 95 percent, respectively; p = 0.561). In conclusion, this study demonstrates that microvascular anastomosis can be performed safely in patients with reactive thrombocytosis without platelet activation.  相似文献   

16.
BACKGROUND: Although hormonal responses to exercise performed in fed state are well documented, far less in known about the effect of a single exercise bout, performed after overnight fasting, on cardio-respiratory responses and hormones secretion. It has been reported that recently discovered hormones as leptin and ghrelin may affect cardiovascular responses at rest. However, their effect on the cardiovascular responses to exercise is unknown. AIMS: This study was designed to determine the effect of overnight fasting on cardio- respiratory responses during moderate incremental exercise. We have hypothesised that fasting / exercise induced changes in plasma leptin / ghrelin concentrations may influence cardiovascular response. MATERIAL AND METHODS: Eight healthy non-smoking men (means +/- SE.: age 23.0 +/- 0.5 years; body mass 71.9 +/- 1.5 kg; height 179.1 +/- 0.8 cm; BMI 22.42 +/- 0.49 kg x m(-2) with VO2max of 3.71 +/- 0.10 l x min(-1)) volunteered for this study. The subjects performed twice an incremental exercise test, with the increase of power output by 30 W every 3 minutes. Tests were performed in a random order: once in the feed state--cycling until exhaustion and second, about one week later, after overnight fasting--cycling until reaching 150 W. RESULTS: In the present study we have compared the results obtained during incremental exercise performed only up to 150 W (59 +/- 2 % of VO2max) both in fed and fasted state. Heart rate measured during exercise at each power output, performed in fasted state was by about 10 bt x min(-1) (p = 0.02) lower then in fed subjects. Respiratory quotient and plasma lactate concentration in fasted state were also significantly (p<0.001) lower than in the fed state. Pre-exercise plasma leptin and ghrelin concentrations were not significantly different in fed and fasted state. Exercise induced increase in hGH was not accompanied by a significant changes in the studied gut hormones such as ghrelin, leptin, and insulin, except for plasma gastrin concentration, which was significantly (p = 0.008) lower in fasting subjects at the power output of 150 W. Plasma [IL-6] at rest before exercise performed in fasted state was significantly (p = 0.03) elevated in relation to the fed state. This was accompanied by significantly higher (p = 0.047) plasma noradrenaline concentration. Plasma IL-6 concentration at rest in fed subjects was negatively correlated with plasma ghrelin concentration (r = -0.73, p < 0.05) and positively correlated with plasma insulin concentration (r = 0.78, p < 0.05). Significant negative correlation (r = -0.90; p < 0.05) was found between plasma insulin and ghrelin concentration at rest in fed subjects. CONCLUSIONS: We have concluded that plasma leptin and ghrelin concentrations have no significant effect on the fasting-induced attenuation of heart rate during exercise. We have postulated that this effect is caused by increased plasma norepinephrine concentration, leading to the increase in systemic vascular resistance and baroreceptor mediated vagal stimulation. Moreover we believe, that the fasting-induced significant increase in plasma IL-6 concentration at rest, accompanied by higher plasma norepinephrine concentration and lower RQ, belongs to the physiological responses, maintaining energy homeostasis in the fasting state.  相似文献   

17.
Blood osmolality (Osm) increases with PCO2 because of CO2 absorption. The influences of NaOH addition, equilibration temperature, and hemoglobin concentration on these respiratory changes of Osm were measured by freezing-point determination in true plasma. Addition of NaOH increases Osm by 2 mosmol X kg H2O-1 X mmol base-1 X l at constant PCO2 due to the osmotic effects of Na+ and produced bicarbonate. Respiratory compensation of the pH change further increases Osm. This contrasts to the respiratory compensation of the osmolar disturbance caused by fixed acid. Raising the equilibration temperature reduces Osm by 0.5 mosmol X kg H2O-1 X degrees C-1 at constant pH mainly caused by a lower absorption coefficient for CO2 and changed pK value for H2CO3. The slope of the linear regression lines between Osm and pH during CO2 equilibration increases with hemoglobin; the value of the quotient delta Osm/delta pH depends directly on the nonbicarbonate buffer value. The use of this quotient for the estimation of the mean nonbicarbonate buffer value of the whole body is suggested. The osmotic effects of therapeutic base infusion should be regarded with caution.  相似文献   

18.
Patients with idiopathic pulmonary fibrosis (IPF) usually develop hypoxemia and pulmonary hypertension when exercising. To what extent endothelium-derived vasodilating agents modify these changes is unknown. The study was aimed to investigate in patients with IPF whether exercise induces changes in plasma levels of endothelium-derived signaling mediators, and to assess the acute effects of inhaled nitric oxide (NO) on pulmonary hemodynamics and gas exchange, at rest and during exercise. We evaluated seven patients with IPF (6 men/1 woman; 57 ± 11 yr; forced vital capacity, 60 ± 13% predicted; carbon monoxide diffusing capacity, 52 ± 10% predicted). Levels of endothelin, 6-keto-prostaglandin-F(1α), thromboxane B(2), and nitrates were measured at rest and during submaximal exercise. Pulmonary hemodynamics and gas exchange, including ventilation-perfusion relationships, were assessed breathing ambient air and 40 ppm NO, both at rest and during submaximal exercise. The concentration of thromboxane B(2) increased during exercise (P = 0.046), whereas levels of other mediators did not change. The change in 6-keto-prostaglandin-F(1α) correlated with that of mean pulmonary arterial pressure (r = 0.94; P < 0.005). Inhaled NO reduced mean pulmonary arterial pressure at rest (-4.6 ± 2.1 mmHg) and during exercise (-11.7 ± 7.1 mmHg) (P = 0.001 and P = 0.004, respectively), without altering arterial oxygenation or ventilation-perfusion distributions in any of the study conditions. Alveolar-to-capillary oxygen diffusion limitation, which accounted for the decrease of arterial Po(2) during exercise, was not modified by NO administration. We conclude that, in IPF, some endothelium-derived signaling molecules may modulate the development of pulmonary hypertension during exercise, and that the administration of inhaled NO reduces pulmonary vascular resistance without disturbing gas exchange.  相似文献   

19.
Seven young (Y, 22-28 yr) and seven middle-aged (MA, 49-60 yr) normotensive men of similar body size, fatness, and maximal oxygen uptake (VO2max) were exposed to a heat challenge in an environmental chamber (48 degrees C, 15% relative humidity). Tests were performed in two hydration states: hydrated (H, 25 ml water/kg body wt 1 h before the test, 2.5 h before exercise) and hypohydrated (Hypo, after 18-20 h of water deprivation). Each test began with a 90-min rest period during which the transiently increased plasma volume and decreased osmolality after drinking in the H condition returned to base line. This period was followed by 30 min of cycle exercise at a mean intensity of 43% VO2max and a 60-min resting recovery period with water ad libitum. Although prior drinking caused no sustained changes in plasma osmolality, Hypo increased plasma osmolality by 7-10 mosmol/kg in both groups. There were no significant age differences in water intake, urine output or osmolality, overall change in body weight, or sweating rate. In the H state, the percent change in plasma volume was less (P less than 0.01) during exercise for the Y group (-5.9 +/- 0.7%) than for the MA group (-9.4 +/- 0.6%). Esophageal temperature (Tes) was higher in the Hypo condition for both groups with no age-related differences. Throughout the 3-h period, mean skin temperature was higher in the Y group and significantly so (P less than 0.05) in the Hypo condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号