首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method to culture explants of adult mouse skin in a modified Eagle's HeLa cell medium was developed in order to further study the biochemical responses to the tumor promoting phorbol esters. The skin explants remained viable for at least 48 hr, as determined by their ability to incorporate 3H-thymidine into DNA as well as to induce epidermal ornithine decarboxylase (EC 4.1.1.17) activity following 12-0-tetradecanoylphorbol-13-acetate addition. The time course of induction of ornithine decarboxylase activity by the tumor promoter was similar to that observed with intact mice. Furthermore, the addition of retinoic acid and indomethacin, the agents that are known to inhibit the induction of ornithine decarboxylase activity by topically applied TPA, also inhibited the induction of ornithine decarboxylase activity by TPA in skin explants.  相似文献   

2.
Several aspects of polyamine biosynthesis were compared in low-passage hamster embryo fibroblasts and transformed hamster fibroblasts. Earlier studies had demonstrated a larger and longer-lasting induction of ornithine decarboxylase activity in transformed cells than in hamster embryo fibroblasts. The increases in intracellular polyamine concentrations after serum stimulation were much greater in chemically transformed HE68BP cells than in normal hamster fibroblasts. Treatment of confluent cultures with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, greatly potentiated ornithine decarboxylase induction by fresh medium in HE68BP cells, but not in hamster fibroblasts. A similar synergistic effect was observed when transformed cells, but not normal cells, were treated with the combination of insulin and promoter. HE68BP cells were capable of growth in medium containing serum concentrations as low as 0.5%, whereas only concentrations of 5% or more supported the growth of hamster embryo fibroblasts. Low serum concentrations induced ornithine decarboxylase in HE68BP cells but not in normal cells, and a given serum concentration always produced a greater induction of ornithine decarboxylase in transformed than in normal cells.Another enzyme involved in polyamine synthesis, S-adenosyl-L-methionine decarboxylase was induced in normal and transformed cells by serum-containing medium or tetradecanoylphorbol acetate, but in contrast to ornithine decarboxylase, no synergistic effect was seen in transformed cells exposed to the combination of fresh medium and the tumor promoter. A macromolecular inhibitor of ornithine decarboxylase was readily detected in hamster fibroblast cultures treated with high concentrations of putrescine, but little or none of this inhibitor was found in HE68BP cultures. In both cell types, however, serum induction of ornithine decarboxylase was inhibited under conditions of excess putrescine.The results demonstrate several differences between normal and transformed hamster cells in the regulation of polyamine synthesis.  相似文献   

3.
The mechanisms by which topically applied retinoic acid to mouse skin inhibits tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced epidermal ornithine decarboxylase activity were analyzed. Retinoic acid inhibition of the induction of epidermal ornithine decarboxylic activity was not the result of nonspecific cytotoxicity, production of a soluble inhibitor of ornithine decarboxylase, or direct effect on its activity. In addition, inhibition of TPA-caused increased ornithine decarboxylase activity does not appear to be due to enhanced degradation and/or post-translational modification of ornithine decarboxylase by transglutaminase-mediated putrescine incorporation. We found that retinoic acid inhibits the synthesis of ornithine decarboxylase caused by TPA. Application of 10 nmol TPA to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase activity which was paralled by increased [3H]difluoromethylornithine binding and an increased incorporation of [35S]methionine into the enzyme. Application of 17 nmol retinoic acid 1 h prior to application of 10 nmol TPA to skin resulted in inhibition of the induction of activity which accompanied inhibition of [3H]difluoromethylornithine binding and [35S]methionine incorporation into ornithine decarboxylase protein as determined by the tube-gel electrophoresis of the enzyme immunoprecipitated with monoclonal antibodies to it. Inhibition of ornithine decarboxylase synthesis was not the result of the inhibitory effect of retinoic acid on general protein synthesis. The results indicate that retinoic acid possibly inhibits TPA-caused synthesis of ornithine decarboxylase protein selectively.  相似文献   

4.
Application of 12-0-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to the induction of ornithine decarboxylase (EC 4.1.1.17) and the accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was determined using α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. α-Difluoromethylornithine applied to the skin of mice or administered in drinking water in conjunction with applications of TPA to 7,12-dimethylbenz[a]anthracene-initiated mouse skin inhibited the formation of mouse skin papillomas by 50 and 90% respectively; TPA-induced ornithine decarboxylase activity and the accumulation of putrescine were almost completely inhibited.  相似文献   

5.
The effects of various promoters in two-step carcinogenesis on the induction of histidine decarboxylase in the skin of mice was investigated. The potencies of various phorbol esters in inducing histidine decarboxylase activity were parallel with their tumor-promoting activities. Indole alkaloids such as dihydroteleocidin B and lyngbyatoxin A, which induced ornithine decarboxylase and promoted tumor development in the skin of mice with the same potency as 12-O-tetradecanoylphorbol-13-acetate (TPA), also induced histidine decarboxylase activity. These results suggest that histamine produced by this inducible histidine decarboxylase may play some role in tumor promotion.  相似文献   

6.
1-Oleoyl-2-acetyl-glycerol induced a rise in ornithine decarboxylase activity in isolated epidermal cells in a concentration-dependent manner. The time course of the induction of ornithine decarboxylase by 1-oleoyl-2-acetyl-glycerol was similar to that by 12-O-tetradecanoylphorbol-13-acetate. A23187 did not enhance the enzyme induction caused by 1-oleoyl-2-acetyl-glycerol. Palmitoyl-DL-carnitine prevented the induction of the enzyme either by 1-oleoyl-2-acetyl-glycerol or 12-O-tetradecanoyl-phorbol-13-acetate. These results suggest that the activation of protein kinase C is an initial and essential event in the process of ornithine decarboxylase induction caused by 12-O-tetradecanoyl-phorbol-13-acetate.  相似文献   

7.
We have studied the induction of papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene and in their nontransgenic littermates. The transgenic animals displayed a basal epidermal ornithine decarboxylase activity that was nearly 20 times higher than in their nontransgenic littermates. A single topical application of 12-O-tetradecanoylphorbol-13-acetate induced a much more profound and longer-lasting increase in transgene-derived ornithine decarboxylase activity in comparison with the endogenous enzyme activity. Initiation of skin tumorigenesis with a single topical application of dimethylbenz[a]antracene followed by twice-weekly application of 12-O-tetradecanoylphorbol-13-acetate resulted in the appearance of first papillomas both in nontransgenic and transgenic animals by week 7. However, after 11 weeks of 12-O-tetradecanoylphorbol-13-acetate application, the number of papillomas per animal was almost 100% higher in the transgenic animals than in their nontransgenic littermates. These results indicate that an overexpression of epidermal ornithine decarboxylase confers a growth advantage on skin tumors in vivo.  相似文献   

8.
Calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5) and trifluoperazine inhibited ornithine decarboxylase induction in lymphocytes activated with phytohemagglutinin or inophore A23187. W-7, a more potent calmodulin antagonist than W-5, suppressed ornithine decarboxylase induction in a higher extent than did W-5. These results suggest that calmodulin may play an important role in ornithine decarboxylase induction in the activated lymphocytes. However, the extent of ornithine decarboxylase induction was greater in cells pretreated with Clostridium phospholipase C and then incubated with ionophore A23187 than in cells incubated with ionophore A23187 without the pretreatment. Moreover, combined treatment of cells with ionophore A23187 and tumor promotor, phorbol 12-myristate 13-acetate, caused synergistic induction of ornithine decarboxylase activity. These results, taken together, suggest that both activations of Ca2+-activated phospholipid-dependent protein kinase by diacylglycerol and of calmodulin-dependent function resulted from an elevation of cytosolic Ca2+ concentration may operate in the induction of ornithine decarboxylase in the activated lymphocytes.  相似文献   

9.
10.
Lyngbyatoxin A, isolated from a marine blue-green alga, and dihydroteleocidin B, a hydrogenated derivative of teleocidin, induce ornithine decarboxylase in mouse skin. In addition, dihydroteleocidin B was recently shown to be a potent tumor promoter in mouse skin. The present studies demonstrate that both lyngbyatoxin A and dihydroteleocidin B induce increased prostaglandin release and choline turnover in HeLa cells at concentrations of 6–20 ng/ml, with a time course similar to that of the potent phorbol ester tumor promoter 12-O-tetradecanoyl phorbol-13-acetate. Thus these indole alkaloids, although structurally different from phorbol ester tumor promoters, share several properties with the latter compounds.  相似文献   

11.
Phorbol ester tumor promoters and growth factors rapidly stimulate ornithine decarboxylase activity in the transformed hamster fibroblast line HE68BP. We report here a close correspondence between the time courses and magnitudes of induction of ornithine decarboxylase activity and immunoreactive ornithine decarboxylase protein following treatment of HE68BP cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) and/or refeeding with fresh medium. Cycloheximide addition to induced cells caused a rapid fall in the levels of both ornithine decarboxylase activity and ornithine decarboxylase protein. Northern blot analysis of RNA isolated from HE68BP cells indicated that treatment with TPA and fresh medium increased the amount of two species of mRNA of lengths 2.4 and 2.1 kilobase. This increased accumulation of ornithine decarboxylase mRNA corresponded temporally to that observed at the protein level, with a 15-fold maximal induction 7 h after treatment followed by a rapid decline in hybridizable RNA. These data indicate that stimulation of ornithine decarboxylase activity by TPA or refeeding involves changes in levels of ornithine decarboxylase mRNA as well as changes in the rate of synthesis of ornithine decarboxylase protein.  相似文献   

12.
13.
Induction of ornithine decarboxylase has been correlated with the onset of cellular proliferation and cAMP production. Whether the resulting increases in polyamine levels are essential mediators of growth and/or differentiation or are merely incidental remains controversial. We have used FRTL-5 thyroid cells in culture to study the effects of three growth factors on ornithine decarboxylase activity. These factors [TSH, bovine calf serum, and 12-O-tetradecanoylphorbol-13-acetate (TPA)] are thought to act through different intracellular pathways. TSH stimulates cAMP production in thyroid cells, calf serum acts through ill-defined pathways to stimulate growth, and TPA is known to activate protein kinase C. Bovine calf serum and TSH acted synergistically to induce ornithine decarboxylase activity. Activity was maximal when the phosphodiesterase inhibitor, methyl isobutyl xanthine, was included. Individually, neither serum nor TSH was a potent stimulator of the enzyme. Ornithine decarboxylase mRNA was apparent on Northern blots as a doublet following one hour of exposure to these agents. TPA did not stimulate ornithine decarboxylase activity and had an inhibitory effect on enzyme induction by TSH and serum. Difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, inhibited growth induced by both TPA and TSH in putrescine-free medium. This effect was not apparent in medium containing 10(-5) M putrescine. The data indicate that, although intracellular levels of cyclic AMP regulate ornithine decarboxylase activity, a component in serum is necessary for significant induction of this enzyme. Factors stimulating growth by non-cyclic AMP-dependent pathways may act without apparently stimulating this enzyme, although polyamines appear to be essential for their growth stimulatory effects.  相似文献   

14.
Experiments were carried out to determine the effect of receptor occupancy time on the response of HeLa cells to the tumor promoter phorbol-12,13-dibutyrate. Cells were exposed to the promoter for varying times, and the promoter then removed by washing. The biological responses that were measured were the release of radioactivity from cells pre-loaded with [3H]choline or [14C]arachidonic acid, the incorporation of [3H]choline into phospholipids and the induction of ornithine decarboxylase activity. Removal of phorbol-12,13-dibutyrate from the cells resulted in a rapid cessation of radioactivity release and choline incorporation. It was therefore concluded that continued receptor occupation is required to maintain the promoter induced changes in phospholipid metabolism. In addition, induction of ornithine decarboxylase activity did not occur unless the cells were exposed to phorbol-12,13-dibutyrate for at least 4 h.  相似文献   

15.
At a concentration of 1.25 mM, 14 amino acids were capable of inhibiting the induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in isolated epidermal cells. The greatest percentages of inhibition of TPA-induced epidermal ornithine decarboxylase activity were as follows: cysteine, 98%; tryptophan, 74%; methionine, 64%; phenylalanine, 51%; glycine, 44%; asparagine, 43%; glutamic acid, 42%; leucine, 40%; and arginine, 39%. These amino acid treatments did not alter the time- and concentration-response curves for induction of ornithine decarboxylase activity by TPA. Moreover, there was no difference between the rates at which [3H]arginine, [3H]leucine, [3H]phenylalanine, [3H]methionine, [3H]tryptophan and [14C]cysteine were taken up by freshly isolated epidermal cells or incorporated into epidermal proteins. Arginine, phenylalanine and methionine inhibited the induction of ornithine decarboxylase activity by the tumor promoter to degrees comparable to those elicited by their analogs canavanine and homoarginine, beta-2-thienyl-DL-alanine, and ethionine, respectively. These amino acids and amino acid analogs did not alter the overall rate of protein synthesis. In contrast, both the amino acids and their analogs increased the rates of proteolysis in isolated epidermal cells, an effect which correlated well with the abilities of these different compounds to inhibit TPA-induced ornithine decarboxylase activity. Moreover, both methionine and phenylalanine decreased the half-life and increased the rate of heat denaturation of the TPA-induced enzyme, a result identical to that obtained after treatment with the analogs ethionine and beta-2-thienyl-DL-alanine, respectively. Taken together, these results suggest that millimolar concentrations of exogenous amino acids might induce the synthesis of abnormal proteins and nonfunctional enzymes. Therefore, it is speculated that the uptake of unbalanced amounts of amino acids into the epidermal target cells might alter the stability and the ultrastructure of the TPA-stimulated enzyme just as the amino acid analogs do.  相似文献   

16.
12-O-tetradecanoyl-phorbol-13-acetate (TPA) induced ornithine decarboxylase (ODC, EC 4.1.1.17) in normal, preneoplastic and malignant rat brain cells in culture, but treatment with phorbol, acetate or medium shift resulted in a similar response. Medium shift induced ODC activity in C3H/10T1/2 CL8 cells 4 and 12 hr after treatment. TPA induced only the 12 hr peak. ODC induction in C3H/10T1/2 CL8 cells was completely inhibited by cycloheximide and actinomycin D. Addition of alpha-amanitin abolished the 12 hr peak, but the TPA induced ODC activity was only partly inhibited. ODC induction by TPA was lower in C3H/10T1/2 CL8 cells initiated with 3-methyl-cholanthrene (MCA). ODC increased with TPA up to 10(-7) M and decreased at higher concentrations of TPA.  相似文献   

17.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

18.
Administration of phorbol 12-myristate 13-acetate (PMA) to rats in vivo resulted in the induction of ornithine decarboxylase activity in the liver which could be blocked by preinjection of indomethacin, a cyclooxygenase inhibitor. In vitro administration of PMA to primary cultures of rat parenchymal cells did not lead to an induction of ornithine decarboxylase activity. It was investigated to what extent non-parenchymal liver cells could play an intermediary role in the expression of the PMA effect on ornithine decarboxylase activity in parenchymal liver cells. Addition of conditioned medium from PMA-activated Kupffer cells to cultured parenchymal cells led to the induction of ornithine decarboxylase activity in parenchymal cells. This effect was not observed with conditioned medium from untreated Kupffer cells or from Kupffer cells treated with PMA plus indomethacin. Conditioned media from PMA-treated or untreated endothelial liver cells were ineffective in the induction of ornithine decarboxylase activity in parenchymal liver cells. Prostaglandin D2, the main eicosanoid produced by Kupffer cells, was able to stimulate the synthesis of ornithine decarboxylase in parenchymal liver cells (up to 40-fold) in a dose-dependent way. Prostaglandin (PG) D2 appeared to be a more potent inducer of ornithine decarboxylase activity in parenchymal cells than PGE1 and PGE2. It is concluded that intercellular communication inside the liver mediated by prostaglandins derived from activated Kupffer cells may form a mechanism to induce synthesis of specific proteins in parenchymal cells.  相似文献   

19.
Staurosporine, a most potent protein kinase C inhibitor, actually inhibited protein kinase C activity obtained either from cytosol or particulate fraction of mouse epidermis. Staurosporine at the concentrations which exert protein kinase C inhibition, however, failed to inhibit, but markedly augmented 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused ornithine decarboxylase (ODC) induction in isolated mouse epidermal cells. Staurosporine by itself induced ODC activity as TPA does. Mechanism of ODC induction seems different between these two compounds. Another protein kinase C inhibitor, H-7, inhibited both staurosporine- and TPA-caused ODC induction.  相似文献   

20.
Treatment of lymphocytes with exogenous phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3.) derived from Clostridium perfringens at concentrations similar to those which induced ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity produced diacylglycerol and phosphatidate. A divalent cation ionophore, A23187, and phytohemagglutinin induced not only diacylglycerol formation, but also ornithine decarboxylase activity. Dibutyryl cAMP inhibited both diacylglycerol formation and ornithine decarboxylase induction to a similar extent in phytohemagglutinin-stimulated lymphocytes, but stimulated them somewhat in ionophore A23187-activated lymphocytes. This suggests that the activation of intracellular phospholipase C and the formation of diacylglycerol is involved in ornithine decarboxylase induction in lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号