首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

2.
The ferrous-iron oxidation kinetics of a bacterial culture consisting predominantly of Leptospirillum ferrooxidans were studied in continuous-flow bioreactors. The bacterial culture was fed with a salts solution containing 12 g/L ferrous-iron, at dilution rates ranging from 0.01 to 0.06 l/h, and temperatures ranging from 30 to 40 degrees C, at a pH of 1.75. The growth rate, and the oxygen and ferrous-iron utilization rates of the bacteria, were monitored by means of off-gas analysis and redox-potential measurement. The degree-of-reduction balance was used to compare the theoretical and experimental values of r(CO(2)), -r(O(2)) and -r(Fe(+2)), and the correlation found to be good. The maximum bacterial yield on ferrous-iron and the maintenance coefficient on ferrous-iron, were determined using the Pirt equation. An increase in the temperature from 30 to 40 degrees C did not appear to have an effect on either the maximum yield or maintenance coefficient on ferrous-iron. The average maximum bacterial yield and maintenance coefficient on ferrous-iron were found to be 0.0059 mmol C/mmol Fe(2+) and 0.7970 mmol Fe(2+)/mmol C)/h, respectively. The maximum specific growth rate was found to be 0.077 l/h. The maximum specific ferrous-iron utilization rate increased from 8.65 to 13.58 mmol Fe(2+)/mmol C/h across the range from 30 to 40 degrees C, and could be described using the Arrhenius equation. The kinetic constant in bacterial ferrous-iron oxidation increased linearly with increasing temperature. The ferrous-iron kinetics could be accurately described in terms of the ferric/ferrous-iron ratio by means of a Michaelis-Menten-based model modified to account for the effect of temperature. A threshold ferrous-iron level, below which no further ferrous-iron utilization occurred, was found at a ferric/ferrous-iron ratio of about 2500. At an overall iron concentration of 12 g/L, this value corresponds to a threshold ferrous-iron concentration of 78.5 x10(-3) mM.  相似文献   

3.
The physiology of Saccharomyces cerevisiae CBS 8066 was studied in glucose-limited chemostat cultures. Below a dilution rate of 0.30 h-1 glucose was completely respired, and biomass and CO2 were the only products formed. Above this dilution rate acetate and pyruvate appeared in the culture fluid, accompanied by disproportional increases in the rates of oxygen consumption and carbon dioxide production. This enhanced respiratory activity was accompanied by a drop in cell yield from 0.50 to 0.47 g (dry weight) g of glucose-1. At a dilution rate of 0.38 h-1 the culture reached its maximal oxidation capacity of 12 mmol of O2 g (dry weight)-1 h-1. A further increase in the dilution rate resulted in aerobic alcoholic fermentation in addition to respiration, accompanied by an additional decrease in cell yield from 0.47 to 0.16 g (dry weight) g of glucose-1. Since the high respiratory activity of the yeast at intermediary dilution rates would allow for full respiratory metabolism of glucose up to dilution rates close to mumax, we conclude that the occurrence of alcoholic fermentation is not primarily due to a limited respiratory capacity. Rather, organic acids produced by the organism may have an uncoupling effect on its respiration. As a result the respiratory activity is enhanced and reaches its maximum at a dilution rate of 0.38 h-1. An attempt was made to interpret the dilution rate-dependent formation of ethanol and acetate in glucose-limited chemostat cultures of S. cerevisiae CBS 8066 as an effect of overflow metabolism at the pyruvate level. Therefore, the activities of pyruvate decarboxylase, NAD+- and NADP+-dependent acetaldehyde dehydrogenases, acetyl coenzyme A (acetyl-CoA) synthetase, and alcohol dehydrogenase were determined in extracts of cells grown at various dilution rates. From the enzyme profiles, substrate affinities, and calculated intracellular pyruvate concentrations, the following conclusions were drawn with respect to product formation of cells growing under glucose limitation. (i) Pyruvate decarboxylase, the key enzyme of alcoholic fermentation, probably already is operative under conditions in which alcoholic fermentation is absent. The acetaldehyde produced by the enzyme is then oxidized via acetaldehyde dehydrogenases and acetyl-CoA synthetase. The acetyl-CoA thus formed is further oxidized in the mitochondria. (ii) Acetate formation results from insufficient activity of acetyl-CoA synthetase, required for the complete oxidation of acetate. Ethanol formation results from insufficient activity of acetaldehyde dehydrogenases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The physiology of Saccharomyces cerevisiae CBS 8066 was studied in glucose-limited chemostat cultures. Below a dilution rate of 0.30 h-1 glucose was completely respired, and biomass and CO2 were the only products formed. Above this dilution rate acetate and pyruvate appeared in the culture fluid, accompanied by disproportional increases in the rates of oxygen consumption and carbon dioxide production. This enhanced respiratory activity was accompanied by a drop in cell yield from 0.50 to 0.47 g (dry weight) g of glucose-1. At a dilution rate of 0.38 h-1 the culture reached its maximal oxidation capacity of 12 mmol of O2 g (dry weight)-1 h-1. A further increase in the dilution rate resulted in aerobic alcoholic fermentation in addition to respiration, accompanied by an additional decrease in cell yield from 0.47 to 0.16 g (dry weight) g of glucose-1. Since the high respiratory activity of the yeast at intermediary dilution rates would allow for full respiratory metabolism of glucose up to dilution rates close to mumax, we conclude that the occurrence of alcoholic fermentation is not primarily due to a limited respiratory capacity. Rather, organic acids produced by the organism may have an uncoupling effect on its respiration. As a result the respiratory activity is enhanced and reaches its maximum at a dilution rate of 0.38 h-1. An attempt was made to interpret the dilution rate-dependent formation of ethanol and acetate in glucose-limited chemostat cultures of S. cerevisiae CBS 8066 as an effect of overflow metabolism at the pyruvate level. Therefore, the activities of pyruvate decarboxylase, NAD+- and NADP+-dependent acetaldehyde dehydrogenases, acetyl coenzyme A (acetyl-CoA) synthetase, and alcohol dehydrogenase were determined in extracts of cells grown at various dilution rates. From the enzyme profiles, substrate affinities, and calculated intracellular pyruvate concentrations, the following conclusions were drawn with respect to product formation of cells growing under glucose limitation. (i) Pyruvate decarboxylase, the key enzyme of alcoholic fermentation, probably already is operative under conditions in which alcoholic fermentation is absent. The acetaldehyde produced by the enzyme is then oxidized via acetaldehyde dehydrogenases and acetyl-CoA synthetase. The acetyl-CoA thus formed is further oxidized in the mitochondria. (ii) Acetate formation results from insufficient activity of acetyl-CoA synthetase, required for the complete oxidation of acetate. Ethanol formation results from insufficient activity of acetaldehyde dehydrogenases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The aims of this work were to develop a high-rate fluidized-bed bioprocess for ferric sulfate production, to characterize biomass retention, and to determine the phylogeny of the enrichment culture. After 7 months of continuous enrichment and air aeration at 37 degrees C, the iron oxidation rate of 8.2 g Fe(2+) L(-1)h(-1) (4.5.10(-12) g Fe(2+) cell(-1) h(-1)) was obtained at a hydraulic retention time (HRT) of 0.6 h. However, oxygen supply became the rate-limiting factor. With gas mixture (99.5% O(2)/0.5% CO(2) (vol/vol)) aeration and HRT of 0.2 h, the iron oxidation rate was 26.4 g Fe(2+) L(-1)h(-1) (1.0.10(-11) g Fe(2+) cell(-1) h(-1)). Leptospirillum sp. was predominant in the mesophilic fluidized-bed reactor (FBR) enrichment culture as determined by fluorescent in situ hybridization, while Acidithiobacillus ferrooxidans was not detected. Denaturing gradient gel electrophoresis (DGGE) of the amplified partial 16S rDNA showed only three bands, indicating a simple microbial community. DGGE fragment excision and sequencing showed that the populations were related to L. ferriphilum (100% similarity in sequence) and possibly to the genus Ferroplasma (96% similarity to F. acidiphilum). Jarosite precipitates accumulated on the top of the activated carbon biomass carrier material, increasing the rate of iron oxidation. The activated carbon carrier material, jarosite precipitates, and reactor liquid contained 59% (or 3.71.10(9) cells g(-1)), 31% (or 3.12.10(10) cells g(-1)) and 10% (or 1.24.10(8) cells mL(-1)) of the total FBR microbes, respectively, demonstrating that the jarosite precipitates played an important role in the FBR biomass retention.  相似文献   

6.
Steady-state culture characteristics are usually determined in chemostat cultivations, which are very time-consuming. In contrast, acceleration-stat (A-stat) cultivations in which the dilution rate is continuously changed with a constant acceleration rate are not so time-consuming, especially at high acceleration rates. Therefore, the A-stat could be advantageous to use instead of the chemostat. However, the highest acceleration rate, meaning the fastest A-stat that can be applied for estimating steady-state culture characteristics, is not known yet. Experimental results obtained with Zygosaccharomyces rouxii, an important yeast in soy sauce processes, showed that the culture characteristics during the A-stat with an acceleration rate of 0.001 h(-2) were roughly comparable to those of the chemostat. For higher acceleration rates the deviation between the culture characteristics in the A-stat and those in the chemostat obtained at the same dilution rate generally started to increase. The source of these deviations was examined by simulation for Saccharomyces cerevisiae. The simulations demonstrated that this deviation was not only dependent on the metabolic adaptation rate of the yeast, but also on the rate of change in environmental substrate concentrations during A-stats. From this work, it was concluded that an A-stat with an acceleration rate of 0.001 h(-2) is attractive to be used instead of chemostat whenever a rough estimation of steady-state culture characteristics is acceptable.  相似文献   

7.
The effects of growing Clostridium acetobutylicum NCIB 8052 in a chemostat under conditions of glucose, NH(4) (+), PO(4) (3-), Mg(2+), and Fe(2+) limitation were examined. It was noted that limitation of any major nutrient resulted in the same fermentation pattern. Conditions where minor nutrient levels were reduced appeared to stimulate solvent production. Under conditions of Mg(2+) restriction, a productive solventogenic culture was produced, with a yield of total solvents on glucose of 35.5%.  相似文献   

8.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

9.
The kinetics of ferrous iron oxidation by Leptospirillum ferriphilum (L. ferriphilum) dominated culture was studied in the concentration range of 0.1-20 g Fe(2+)/L and the effect of ferric iron (0-60 g Fe(3+)/L) on Fe(2+) oxidation was investigated at pH below one. Denaturing gradient gel electrophoresis of PCR amplified 16S rRNA genes followed by partial sequencing confirmed that the bacterial community was dominated by L. ferriphilum. In batch assays, Fe(2+) oxidation started without lag phase and the oxidation was completed within 1 to 60 h depending on the initial Fe(2+) concentration. The specific Fe(2+) oxidation rates increased up to around 4 g/L and started to decrease at above 4 g/L. This implies substrate inhibition of Fe(2+) oxidation at higher concentrations. Haldane equation fitted the experimental data reasonably well (R(2) = 0.90). The maximum specific oxidation rate (q(m)) was 2.4 mg/mg VS . h, and the values of the half saturation (K(s)) and self inhibition constants (K(i)) were 413 and 8,650 mg/L, respectively. Fe(2+) oxidation was competitively inhibited by Fe(3+) and the competitive inhibition constant (K(ii)) was 830 mg/L. The time required to reach threshold Fe(2+) concentration was around 1 day and 2.3 days with initial Fe(3+) concentration of 5 and 60 g/L, respectively. The threshold Fe(2+) concentration, below which no further Fe(2+) oxidation occurred, linearly increased with increasing initial Fe(2+) and Fe(3+) concentrations. Fe(2+) oxidation proceeds by L. ferriphilum dominated culture at pH below 1 even in the presence of 60 g Fe(3+)/L. This indicates potential of using and biologically regenerating concentrated Fe(3+) sulfate solutions required, for example, in indirect tank leaching of ore concentrates.  相似文献   

10.
With carrot cells grown in semicontinuous culture with phosphate as limiting nutrient. Dougall and Weyrauch (1980) found that the steady-state culture density was different at different dilution rates. They suggested that the yield constant for biomass was different at different dilution rates. Here the yield constant for biomass for PO(4) (3-), NH(4) (+), Mg(2+), and glucose-limited semicontinuous cultures has been measured directly at two dilution rates. The yield constants for PO(4) (3-), NH(4) (+), and Mg(2+) but not for glucose are different at the two dilution rates. The effects of pH and temperature on the biomass yield constant was measured to extend the number of system parameters examined. Biomass yield constant was changed little with change from 25 to 28 degrees C or from pH 4.2 to pH 5.5. The steady-state levels of anthocyanin were also measured. The responses of anthocyanin levels to the system parameters are different to the biomass responses. The data suggest that at different values of each of the system parameters, the composition and metabolic activities of the cells at steady state in semicontinuous cultures are different.  相似文献   

11.
When grown on a medium containing 5 g maltodextrin L-1, Aspergillus niger transformant N402[pAB6-10]B1, which has an additional 20 copies of the glucoamylase (glaA) gene, produced 320 +/- 8 mg (mean +/- S.E.) glucoamylase (GAM) L-1 in batch culture and 373 +/- 9 mg GAM L-1 in maltodextrin-limited chemostat culture at a dilution rate of 0.13 h-1. These values correspond to specific production rates (qp) of 5.6 and 16.0 mg GAM [g biomass]-1 h-1, respectively. In maltodextrin-limited chemostat cultures grown at dilution rates from 0.06 to 0.14 h-1, GAM was produced by B1 in a growth-correlated manner, demonstrating that a continuous flow culture system operated at a high dilution rate is an efficient way of producing this enzyme. In chemostat cultures grown at high dilution rates, GAM production in chemostat cultures was repressed when the limiting nutrient was fructose or xylose, but derepressed when the limiting nutrient was glucose (qp, 12.0), potassium (6.2), ammonium (4.1), phosphate (2.0), magnesium (1.5) or sulphate (0.9). For chemostat cultures grown at a dilution rate of 0.13 h-1, the addition of 5 g mycopeptone L-1 to a glucose-mineral salts medium resulted in a 64% increase in GAM concentration (from 303 +/- 12 to 496 +/- 10 mg GAM L-1) and a 37% increase in specific production rate (from 12.0 +/- 0.4 to 16.4 +/- 1.6 mg GAM [g biomass]-1 h-1). However, although recombinant protein production was stable for at least 948 h (191 generations) when A. niger B1 was grown in chemostat culture on glucose-mineral salts medium, it was stable for less than 136 h (27 generations) on medium containing mycopeptone. The predominant morphological mutants occurring after prolonged chemostat culture were shown to have selective advantage in the chemostat over the parental strain. Compared to their parental strains, two morphological mutants had similar GAM production levels, while a third had a reduced production level. Growth tests and molecular analysis revealed that the number of glaA gene copies in this latter strain (B1-M) was reduced, which could explain its reduced GAM production. Shake-flask cultures carried out with the various morphological mutants revealed that in batch culture all three strains produced considerably less GAM than their parent strains and even less than N402. We show that physiological changes in these morphological mutants contribute to this decreased level of GAM production.  相似文献   

12.
Most recombinant proteins generated in filamentous fungi are produced in fed-batch cultures, in which specific growth rate normally decreases progressively with time. Because of this, such cultures are more suited to the production of products that are produced efficiently at low-growth rates (e.g., penicillin) than to products which are produced more efficiently at high-growth rates (e. g., glucoamylase). Fusarium venenatum A3/5 has been transformed (JeRS 325) to produce Aspergillus niger glucoamylase (GAM) under the control of the Fusarium oxysporum trypsin-like protease promoter. No glucoamylase was detected in the culture supernatant during exponential growth of F. venenatum JeRS 325 in batch culture. In glucose-limited chemostat cultures, GAM concentration increased with decrease in dilution rate, but the specific production rate of GAM (g GAM [g biomass](-1) h(-1)) remained approximately constant over the dilution-rate range 0.05 h to 0.19 h(-1), i.e., the recombinant protein was produced in a growth-rate-independent manner. The specific production rate decreased at dilution rates of 0.04 h(-1) and below. Specific production rates of 5.8 mg and 4.0 mg GAM [g biomass](-1) h(-1) were observed in glucose-limited chemostat cultures in the presence and absence of 1 g mycological peptone L(-1). Compared to production in batch culture, and for the same final volume of medium, there was no increase in glucoamylase production when cultures were grown in fed-batch culture. The results suggested that a chemostat operated at a slow dilution rate would be the most productive culture system for enzyme production under this trypsin-like promoter.  相似文献   

13.
1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg(2+)-limitation to PO(4) (3-)-limitation or K(+)-limitation to PO(4) (3-)-limitation showed that teichuronic acid synthesis started immediately the culture became PO(4) (3-)-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO(4) (3-)-limited B. subtilis var. niger culture was returned to being Mg(2+)-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.  相似文献   

14.
A model is proposed that accounts for the decreases in yield which occur in chemostat cultures of mesophilic yeasts at superoptimal growth temperatures. Two yield depressing effects were identified, one due to increased maintenance requirements by the viable fraction of the population, the other due to energy substrate dissipation by the nonviable fraction. The two effects are functions of the dilution rate, as is the fraction of nonviable cells. Experimental results were obtained on the yield, maintenance, and dissipation of energy substrate in a glucose-limited chemostat culture of a respiration-deficient mutant of Saccharomyces cerevisiae at 39°C. The rates of glucose utilization for maintenance and for dissipation constituted, respectively, 33–28% and 15–9% of the total glucose utilization rate over the range of dilution rates tested (0.038–0.064 hr?1), while the yield varied over this range from 0.066–0.085 g of biomass (dry wt) per gram of glucose.  相似文献   

15.
The growth and product formation kinetics of the bovine pathogen Mannheimia (Pasteurella) haemolytica strain OVI-1 in continuous culture were investigated. The leukotoxin (LKT) concentration and yield on biomass could substantially be enhanced by supplementation of a carbon-limited medium with an amino acid mixture or a mixture of cysteine and glutamine. Acetic acid was a major product, increasing to 1.66 g l(-1) in carbon-limited chemostat culture at intermediate dilution rates and accounting for more than 80% of the glucose carbon, whereas in amino acid-limited cultures high acetic acid concentrations were produced at low dilution rates, suggesting a carbon-overflow metabolism. The maintenance coefficients of carbon-limited and carbon-sufficient cultures were 0.07 and 0.88 mmol glucose g(-1) h(-1), respectively. LKT production was partially growth-associated and the LKT concentration was maximised to 0.15 g l(-1) and acetic acid production minimised by using a carbon-limited medium and a low dilution rate.  相似文献   

16.
AIMS: To analyse the influence of cell growth rate and iron concentration on the production of pyoverdines (PVDs) and of their reduced dihydro forms by three fluorescent Pseudomonas strains (P. putida BTP16, P. fluorescens BTP7 and P. aeruginosa 7NSK2). METHODS: PVD and dihydropyoverdine (DHPVD) productions were determined by LC ESI-MS and spectrophotometry during batch and chemostat culture at different dilution rates. SIGNIFICANCE: The relatively high PVD-to-DHPVD ratio (0.57) observed in pH-controlled batch cultures suggested that a base-catalysed chemical oxidation of the dihydroform is not the prime mechanism involved in generating PVDs. Interestingly, in chemostat cultures the PVD-to-DHPVD ratio was significantly reduced at low specific growth rate. Our results suggest that the oxidation of DHPVD to PVD is catalysed by an iron-dependent enzymatic reaction rather than a chemical oxidation.  相似文献   

17.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

18.
Summary Model studies of anaerobic protein digestion were performed using gelatin dissolved in a mineral medium, which was fed to a mixed population of bacteria in a carbon-substrate limited chemostat culture. The dilution rate and culture pH value were varied progressively in order to determine the optimal conditions for hydrolysis and acidification (i.e., fatty acids formation). The optimum pH value appeared to be in the neutral region (pH>6.3), and the maximal dilution rate allowing steady state growth was 0.23 h-1. At this dilution rate and at pH 7 hydrolysis of gelatin was 78% complete, and 79% of the protein hydrolysed was fermented to identifiable products. At submaximal dilution rates both these values were higher. The main fermentation products were acetate, propionate, and valerate, and minor amounts of other volatile fatty acids. The product composition was relatively independent of the dilution rate, but varied substantially with the pH value.  相似文献   

19.
Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h-1) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.  相似文献   

20.
The growth stoichiometry of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus was determined in glucose-limited chemostat cultivations using a chemically defined medium. This strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) when it is fed with adipic acid. The biomass yield and maintenance coefficients for the strain were similar to those found for penicillin-producing strains of Penicillium chrysogenum. The maximum specific growth rate in the chemostat was found to be 0.11 h(-1). Metabolic degradation of adipate was found to take place in significant amounts only at dilution rates below 0.03 h(-1). After three to five residence times, adipate degradation and ad-7-ADCA production disappeared, and this allowed determination of the biomass yield coefficient on adipate. The morphology was measured at different dilution rates and the mean total hyphal length and mean number of tips both increased with an increase in dilution rate from 0.015 to 0.065 h(-1). Both variables decreased when the dilution rate was increased above 0.065 h(-1). A correlation between mean total hyphal length and productivity of ad-7-ADCA was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号