首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The divalent metal transporter (DMT1, also known as NRAMP2 or DCT1) is the likely target for regulation of intestinal iron absorption by iron stores. We investigated changes in intestinal DMT1 expression after a bolus of dietary iron in iron-deficient Belgrade rats homozygous for the DMT1 G185R mutation (b/b) and phenotypically normal heterozygous littermates (+/b). Immunofluorescent staining with anti-DMT1 antisera showed that DMT1 was located in the brush-border membrane. Duodenal DMT1 mRNA and protein levels were six- and twofold higher, respectively, in b/b rats than in +/b rats. At 1.5 h after dietary iron intake in +/b and b/b rats, DMT1 was internalized into cytoplasmic vesicles. At 1.5 and 3 h after iron intake in +/b and b/b rats, there was a rapid decrease of DMT1 mRNA and a transient increase of DMT1 protein. The decrease of DMT1 mRNA was specific, because ferritin mRNA was unchanged. After iron intake, an increase in ferritin protein and decrease in iron-regulatory protein binding activity occurred, reflecting elevated intracellular iron pools. Thus intestinal DMT1 rapidly responds to dietary iron in both +/b and b/b rats. The internalization of DMT1 may be an acute regulatory mechanism to limit iron uptake. In addition, the results suggest that in the Belgrade rat DMT1 with the G185R mutation is not an absolute block to iron.  相似文献   

2.
3.
Changes in cellular uptake of glutamate following transient cerebral ischemia is of possible importance to ischemia induced cell death. In the present study, we employed in situ hybridization and immunohistochemistry to investigate the influence of cerebral ischemia on expression of mRNA and protein of the astrocyte glutamate transporter GLT1, and of glial fibrillary acidic protein. Different subfields of CA1 and CA3 of the rat hippocampus were studied at various time-points after ischemia (days 1, 2, 4, and 21). In CA1, GLT1-mRNA was decreased at all time-points after ischemia except from day 2, whereas in CA3, decreases were seen only on day 1. Expression of GLT1-protein in CA1 was unchanged during the initial days after ischemia, but decreased markedly from day 2 to 4. In CA3, GLT1-protein increased progressively throughout the observation period after ischemia. Following the degeneration of CA1 pyramidal cells, a positive correlation between the number of CA1 pyramidal cells and expression of either GLT1-mRNA or -protein was evident selectively in CA1. Increases in expression of mRNA and protein of glial fibrillary acidic protein were present from day 2, most notable in CA1. The present data provide evidence that expression of GLT1 in CA1 of the hippocampus is not decreased persistently before the degeneration of CA1 pyramidal cells, but is downregulated in response to loss of these neurons. Since the reduction in GLT1 expression evolved concomitantly with the degeneration of CA1 pyramidal cells, it may contribute to the severity of CA1 pyramidal cell loss. A progressive postischemic increase in GLT1 expression in CA3 may be linked to the resistance of CA3 neurons to ischemic cell damage.  相似文献   

4.
5.
6.
Because of their high energetic demand, neurons within the mammalian central nervous system are extremely sensitive to changes in partial pressure of oxygen. Faced with acute hypoxic conditions, an organism must follow a complex and highly dynamic emergency plan to secure survival. Behavioral functions that are not immediately essential for survival are turned off, and critical behaviors (such as breathing) undergo a biphasic response. An augmentation of breathing is initially adaptive, whereas prolonged hypoxic conditions are better served by an energy-saving mode. However, the hypoxic response of an organism depends on many additional factors. Environmental conditions, the animal's age and health, and the pattern (continuous vs intermittent) and duration (chronic vs acute) of hypoxia greatly determine the specific course of a hypoxic response. Different forms of hypoxia can cause pathology or be used as therapy. Therefore, it is not surprising that the hypoxic response of an organism results from widespread and highly diverse reconfigurations of neuronal network functions in different brain areas that are accomplished by diverse hypoxic changes at all levels of the nervous system (i.e., molecular, cellular, synaptic, neuronal, network). Hypoxia-induced changes in synaptic transmission are generally depressive and result primarily from presynaptic mechanisms, whereas changes in intrinsic properties involve excitatory and inhibitory alterations involving the majority of K+, Na+, and Ca2+ channels. This article reviews the response of the nervous system to hypoxia, accounting for all levels of integration from the cellular to the network level, and postulates that a better understanding of the diversity of cellular events is only possible if cellular and network events are considered in a functional and organismal context.  相似文献   

7.
Suyama T  Okada S  Ishijima T  Iida K  Abe K  Nakai Y 《PloS one》2012,7(1):e29483
The mechanism by which phosphorus levels are maintained in the body was investigated by analyzing changes in gene expression in the rat kidney following administration of a high phosphorus (HP) diet. Male Wistar rats were divided into two groups and fed a diet containing 0.3% (control) or 1.2% (HP) phosphorous for 24 days. Phosphorous retention was not significantly increased in HP rats, but fractional excretion of phosphorus was significantly increased in the HP group compared to controls, with an excessive amount of the ingested phosphorus being passed through the body. DNA microarray analysis of kidney tissue from both groups revealed changes in gene expression profile induced by a HP diet. Among the genes that were upregulated, Gene Ontology (GO) terms related to ossification, collagen fibril organization, and inflammation and immune response were significantly enriched. In particular, there was significant upregulation of type IIb sodium-dependent phosphate transporter (NaPi-IIb) in the HP rat kidney compared to control rats. This upregulation was confirmed by in situ hybridization. Distinct signals for NaPi-IIb in both the cortex and medulla of the kidney were apparent in the HP group, while the corresponding signals were much weaker in the control group. Immunohistochemical analysis showed that NaPi-IIb localized to the basolateral side of kidney epithelial cells surrounding the urinary duct in HP rats but not in control animals. These data suggest that NaPi-IIb is upregulated in the kidney in response to the active excretion of phosphate in HP diet-fed rats.  相似文献   

8.
We assessed the functional expression of the norepinephrine (NE) transporter (NET) in cultured rat cortical astrocytes. Specific [3H]NE uptake increased in a time-dependent manner, and this uptake involves temperature- and Na+-sensitive mechanisms. The Na+-dependent [3H]NE uptake was saturable, and the Km for the process was 539.3 +/- 55.4 nm and the Vmax was 1.41 +/- 0.03 pmol/mg protein/min. Ouabain, a Na+-K+ ATPase inhibitor, significantly inhibited Na+-dependent [3H]NE uptake. The selective NE uptake inhibitor nisoxetine, the tricyclic antidepressants desipramine and imipramine, and the serotonin and NE reuptake inhibitor (SNRI) milnacipran very potently inhibited Na+-dependent [3H]NE uptake. On the other hand, GBR-12935 (a selective dopamine uptake inhibitor), fluvoxamine (a selective serotonin reuptake inhibitor), venlafaxine (a SNRI) and cocaine had weaker inhibitory activities. RT-PCR demonstrated that astrocytes expressed mRNA for the cloned NET protein, which was characterized as neuronal NET. Western blots indicated that anti-NET polyclonal antibody recognized a major band of 80 kDa in astrocytes. These data indicate that the neuronal NET is functionally expressed in cultured rat astrocytes. Glial cells may exert significant control of noradrenergic activity by inactivating NE that escapes neuronal re-uptake in sites distant from terminals, and are thus cellular targets for antidepressant drugs that inhibit NE uptake.  相似文献   

9.
10.
Normal development of both human and rat brain is associated with a switch in metabolic fuel from a combination of glucose and ketone bodies in the immature brain to a nearly total reliance on glucose in the adult. The delivery of glucose, lactate, and ketone bodies from the blood to the brain requires specific transporter proteins, glucose and monocarboxylic acid transporter proteins (GLUTs and MCTs), respectively. Developmental expression of the GLUTs in rat brain, i.e., 55-kDa GLUT1 in the blood-brain barrier (BBB), 45-kDa GLUT1 and GLUT3 in vascular-free brain, corresponds to maturational increases in cerebral glucose uptake and utilization. It has been suggested that MCT expression peaks during suckling and sharply declines thereafter, although a comparable detailed study has not been done. This study investigated the temporal and regional expression of MCT1 and MCT2 mRNA and protein in the BBB and the nonvascular brain during postnatal development in the rat. The results confirmed maximal MCT1 mRNA and protein expression in the BBB during suckling and a decline with maturation, coincident with the switch to glucose as the predominant cerebral fuel. However, nonvascular MCT1 and MCT2 levels do not reflect changes in cerebral energy metabolism, suggesting a more complex regulation. Although MCT1 assumes a predominantly glial expression in postweanling brain, the concentration remains fairly constant, as does that of MCT2 in neurons. The maintenance of nonvascular MCT levels in the adult brain implies a major role for these proteins, in concert with the GLUTs in both neurons and astrocytes, to transfer glycolytic intermediates during cerebral energy metabolism.  相似文献   

11.
Glucose transporter expression in rat mammary gland.   总被引:1,自引:0,他引:1       下载免费PDF全文
The expression of different glucose transporter isoforms was measured during the development and differentiation of the rat mammary gland. Before conception, when the mammary gland is mainly composed of adipocytes, Glut 4 and Glut 1 mRNAs and proteins were present. During pregnancy, the expression of Glut 4 decreased progressively, whereas that of Glut 1 increased. In the lactating mammary gland only Glut 1 was present, and was expressed at a high level. The absence of Glut 4 suggests that glucose transport is not regulated by insulin in the lactating rat mammary gland.  相似文献   

12.
Tissue-specific expression of kallikrein-related genes in the rat   总被引:10,自引:0,他引:10  
P L Ashley  R J MacDonald 《Biochemistry》1985,24(17):4520-4527
Four distinct kallikrein-related mRNAs (PS, S1, S2, and S3), encoded by members of a multigene family, are selectively expressed in various combinations in several rat tissues. Although closely related along most of the mRNA sequence, the four mRNAs can be selectively detected with synthetic oligonucleotide probes complementary to highly variable mRNA subregions. PS mRNA, which encodes an enzyme with true kallikrein activity, is present at high levels in the submaxillary gland, pancreas, and kidney. S1 mRNA, which encodes an enzyme similar to the PS kallikrein, is detected only in the submaxillary gland and is present at one-fifth the PS mRNA level. S2 mRNA, which encodes the enzyme tonin, is present in the submaxillary gland at half the PS mRNA level and at a slightly higher level in the prostate. S3 mRNA, which encodes an enzyme very similar to tonin, is present in the submaxillary gland at one-tenth the PS mRNA level and in the prostate at about the same level as tonin mRNA.  相似文献   

13.
Hypoxia-induced changes in shivering and body temperature   总被引:2,自引:0,他引:2  
Experiments were carried out on conscious cats to evaluate the general characteristics and modes of action of hypoxia on thermoregulation during cold stress. Intact and carotid-denervated (CD) conscious cats were exposed to ambient hypoxia (low inspired O2 fraction) or CO hypoxia in prevailing laboratory (23-25 degrees C) or cold (5-8 degrees C) environments. In the cold, both groups promptly decreased shivering and body temperature when exposed to either type of hypoxia. Small increases in CO2 concentration reinstituted shivering in both groups. At the same inspired concentration of O2, CD animals decreased shivering and body temperature more than intact cats. While this difference resulted, in part, from a lower alveolar PO2 in CD cats, a difference between intact and CD cats was apparent when the two groups were compared at the same alveolar PO2. During more prolonged hypoxia (45 min), shivering returned but did not reach normoxic levels, and body temperature tended to stabilize at a hypothermic value. Exposure to various levels of hypoxia produced graded suppression of shivering, with the result that the change in body temperature varied directly with inspired O2 concentration. Hypoxia appears to act on the central nervous system to suppress shivering and sinus nerve afferents appear to counteract this direct effect of hypoxia. In intact cats, this counteraction appears to be sufficient to maintain body temperature under hypoxic conditions at room temperature but not in the cold.  相似文献   

14.
15.
16.
17.
18.
19.
Three closely related genes encoding amino acid transport proteins are clustered on 5q32 in humans, and Chromosome (Chr) 11 in mice. The human SLC36A1 gene, which encodes the lysosomal amino acid transporter LYAAT1/PAT1, generates multiple alternative mRNAs, some of which encode truncated proteins. SLC36A1 is expressed in numerous tissues, whereas expression of SLC36A2, which encodes the glycine transporter tramdorin1/PAT2, is most abundant in kidney and muscle. Expression of a third gene, SLC36A3, is restricted to testis. Mouse Slc36a2 also is expressed in bone and fat tissue. Polymorphisms in human SLC36A2 exclude it as a candidate locus for a peripheral neuropathy that has been mapped to 5q31-33. SLC36A2 is a candidate gene for 5q-myelodysplastic syndrome, on the basis of its chromosomal location and its expression in bone.  相似文献   

20.
The cDNAs of two sorbitol transporters, common plantain (Plantago major) polyol transporter (PLT) 1 and 2 (PmPLT1 and PmPLT2), were isolated from a vascular bundle-specific cDNA library from common plantain, a dicot plant transporting Suc plus sorbitol in its phloem. Here, we describe the kinetic characterization of these sorbitol transporters by functional expression in Brewer's yeast (Saccharomyces cerevisiae) and in Xenopus sp. oocytes and for the first time the localization of plant PLTs in specific cell types of the vascular tissue. In the yeast system, both proteins were shown to be uncoupler sensitive and could be characterized as low-affinity and low-specificity polyol symporters. The Km value for the physiological substrate sorbitol is 12 mm for PmPLT1 and even higher for PmPLT2, which showed an almost linear increase in sorbitol transport rates up to 20 mm. These data were confirmed in the Xenopus sp. system, where PmPLT1 was analyzed in detail and characterized as a H+ symporter. Using peptide-specific polyclonal antisera against PmPLT1 or PmPLT2 and simultaneous labeling with the monoclonal antiserum 1A2 raised against the companion cell-specific PmSUC2 Suc transporter, both PLTs were localized to companion cells of the phloem in common plantain source leaves. These analyses revealed two different types of companion cells in the common plantain phloem: younger cells expressing PmSUC2 at higher levels and older cells expressing lower levels of PmSUC2 plus both PLT genes. The putative role of these low-affinity transporters in phloem loading is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号