首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Brassinin (1), a crucial plant defense produced by crucifers, is detoxified by the phytopathogenic fungus Leptosphaeria maculans (Phoma lingam) to indole-3-carboxaldehyde using a putative brassinin oxidase. Potential inhibitors of brassinin detoxification were designed by replacement of its dithiocarbamate group (toxophore) with carbamate, dithiocarbonate, urea, thiourea, sulfamide, sulfonamide, dithiocarbazate, amide, and ester functional groups. In addition, the indolyl moiety was substituted for naphthalenyl and phenyl. The syntheses and chemical characterization of these potential detoxification inhibitors, along with their antifungal and cytotoxic activity, as well as screening using cultures of L. maculans are reported. Overall, three types of interaction were observed in cultures of L. maculans co-incubated with the potential inhibitors and brassinin: (1) a decrease on the rate of brassinin detoxification due to the strong inhibitory activity of the compound on fungal growth, (2) a decrease on the rate of brassinin detoxification due to the inhibitory activity of the compound on the putative brassinin oxidase, and (3) a low to no detectable effect on the rate of brassinin detoxification. A noticeable decrease in the rate of brassinin detoxification was observed in the presence of N'-methylbrassinin, methyl N-methyl-N-(naphthalen-2-ylmethyl) dithiocarbamate, tryptophol dithiocarbonate, and methyl 3-phenyldithiocarbazate. Tryptophol dithiocarbonate appeared to be the best inhibitor among the designed compounds, representing the first inhibitor of brassinin detoxification and potentially the first selective protecting agent of oilseed crucifers against L. maculans infestation.  相似文献   

2.
Brassinin hydrolase (BHAb), an inducible enzyme produced by the plant pathogen Alternaria brassicicola under stress conditions, catalyzes the hydrolysis of the methyl dithiocarbamate group of the phytoalexin brassinin, to indolyl-3-methanamine, methane thiol and carbonyl sulfide. Thirty four substrate inspired compounds, bioisosteres of brassinin and a range of related compounds, were evaluated as potential substrates and inhibitors of BHAb for the first time. While six compounds containing thiocarbamate, carbamate and carbonate groups displayed inhibitory activity against BHAb, only two were found to be substrates (thionecarbamate and dithiocarbamate). Methyl naphthalen-1-yl-methyl carbamate, the most potent inhibitor of the six, and methyl N'-(1-methyl-3-indolylmethyl)carbamate inhibited BHAb through a reversible noncompetitive mechanism (K(i)=89±9 and 695±60μM, respectively). Importantly, these carbamate inhibitors were resistant to degradation by A. brassicicola. Carbonates were also inhibitory of BHAb, but a quick degradation by A. brassicicola makes their potential use as crop protectants less likely. Overall, these results indicate that indolyl and naphthalenyl carbamates are excellent lead structures to design new paldoxins that could inhibit the detoxification of brassinin by A. brassicicola.  相似文献   

3.
Pedras MS  Jha M  Okeola OG 《Phytochemistry》2005,66(22):2609-2616
The impact of the phytoalexins camalexin and spirobrassinin on brassinin detoxification by Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.], a pathogenic fungus prevalent on crucifers, was investigated. Brassinin is a plant metabolite of great significance due to its dual role both as an effective phytoalexin and as an early biosynthetic precursor of the majority of the phytoalexins produced by plants of the family Brassicaceae (Cruciferae). The rate of detoxification of brassinin in cultures of L. maculans increased substantially in the presence of camalexin, whereas spirobrassinin did not appear to have a detectable effect. In addition, the brassinin detoxifying activity of cell-free extracts obtained from cultures incubated with camalexin was substantially higher than that of control cell-free extracts or cultures incubated with spirobrassinin, and correlated positively with brassinin oxidase activity. The discovery of a potent synthetic modulator of brassinin oxidase activity, 3-phenylindole, and comparison with the commercial fungicide thiabendazole is also reported. The overall results indicate that brassinin oxidase production is induced by camalexin and 3-phenylindole but not by spirobrassinin or thiabendazole. Importantly, our work suggests that introduction of the camalexin pathway into plants that produce brassinin might make these plants more susceptible to L. maculans.  相似文献   

4.
Pedras MS  Minic Z  Jha M 《The FEBS journal》2008,275(14):3691-3705
Blackleg fungi [Leptosphaeria maculans (asexual stage Phoma lingam) and Leptosphaeria biglobosa] are devastating plant pathogens with well-established stratagems to invade crucifers, including the production of enzymes that detoxify plant defenses such as phytoalexins. The significant roles of brassinin, both as a potent crucifer phytoalexin and a biosynthetic precursor of several other plant defenses, make it critical to plant fitness. Brassinin oxidase, a detoxifying enzyme produced by L. maculans both in vitro and in planta, catalyzes the detoxification of brassinin by the unusual oxidative transformation of a dithiocarbamate to an aldehyde. Purified brassinin oxidase has an apparent molecular mass of 57 kDa, is approximately 20% glycosylated, and accepts a wide range of cofactors, including quinones and flavins. Purified brassinin oxidase was used to screen a library of brassinin analogues and crucifer phytoalexins for potential inhibitory activity. Unexpectedly, it was determined that the crucifer phytoalexins camalexin and cyclobrassinin are competitive inhibitors of brassinin oxidase. This discovery suggests that camalexin could protect crucifers from attacks by L. maculans because camalexin is not metabolized by this pathogen and is a strong mycelial growth inhibitor.  相似文献   

5.
Brassinin is a phytoalexin produced by plants from the family Brassicaceae that displays antifungal activity against a number of pathogens of Brassica species, including Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.] and L. biglobosa. The interaction of a group of isolates of L. maculans virulent on brown mustard (Brassica juncea) with brassinin was investigated. The metabolic pathway for degradation of brassinin, the substrate selectivity of the putative detoxifying hydrolase, as well as the antifungal activity of metabolites and analogs of brassinin are reported. Brassinin hydrolase activity was detectable only in cell-free homogenates resulting from cultures induced with brassinin, N'-methylbrassinin, or camalexin. The phytoalexin camalexin was a substantially stronger inhibitor of these isolates than brassinin, causing complete growth inhibition at 0.5mM.  相似文献   

6.
Sclerotinia sclerotiorum is a fungal pathogen, which causes stem rot in crucifer crops and in several other plant families resulting in enormous yield losses all over the world. Brassinin is a phytoalexin produced by crucifer plants as part of a general defense mechanism against pathogens and other forms of stress. To the great detriment of crucifers, some fungal pathogens, as for example S. sclerotiorum, can detoxify brassinin. Detoxification of brassinin via glucosylation of the indole nitrogen is carried out by an inducible glucosyltransferase produced in S. sclerotiorum. Because brassinin is a precursor of several phytoalexins active against S. sclerotiorum, brassinin glucosyltransferase (BGT) is a potentially useful metabolic target to control S. sclerotiorum. Toward this end, we have designed, synthesized, and screened several brassinin analogues using both mycelial cultures and cell-free homogenates of S. sclerotiorum. A noticeable decrease in the rate of brassinin detoxification in cell cultures was observed in the presence of methyl (benzofuran-3-yl)methyldithiocarbamate, methyl (benzofuran-2-yl)methyldithiocarbamate, methyl (indol-2-yl)methyldithiocarbamate, 3-phenylindole, 6-fluoro-3-phenylindole, and 5-fluorocamalexin. In addition, these compounds caused substantial inhibition of BGT activity (ca. 80%) in cell-free homogenates of S. sclerotiorum, while only brassinin and 3-phenylindole were transformed to the corresponding beta-d-1-glucopyranosyl products. These results indicate that, although many other glucosyltransferases appear to be produced by S. sclerotiorum in cell cultures, BGT is substrate specific. Overall these results show that selective and potent inhibitors of BGT can be developed.  相似文献   

7.
The phytoalexins, brassinin, 1-methoxybrassinin and cyclobrassinin, were metabolized by the stem rot fungus Sclerotinia sclerotiorum into their corresponding glucosyl derivatives displaying no detectable antifungal activity. Importantly, co-incubation of S. sclerotiorum with camalexins, various phytoalexin analogs, and brassinin indicated that a synthetic camalexin derivative could slow down substantially the rate of brassinin detoxification. Furthermore, inducible brassinin glucosyltransferase (BGT) activity was detected in crude cell-free extracts of S. sclerotiorum. BGT activity was induced by the phytoalexin camalexin, and the brassinin analogs methyl tryptamine dithiocarbamate and methyl 1-methyltryptamine dithiocarbamate. The overall results suggest that the fungus S. sclerotiorum in its continuous adaptation and co-evolution with brassinin producing plants, has acquired efficient glucosyltransferase(s) that can disarm some of the most active plant chemical defenses.  相似文献   

8.
The metabolism of the cruciferous phytoalexins brassinin and cyclobrassinin, and the related compounds indole-3-carboxaldehyde, glucobrassicin, and indole-3-acetaldoxime was investigated in various plant tissues of Brassica juncea and B. rapa. Metabolic studies with brassinin showed that stems of B. juncea metabolized radiolabeled brassinin to indole-3-acetic acid, via indole-3-carboxaldehyde, a detoxification pathway similar to that followed by the "blackleg" fungus (Phoma lingam/Leptosphaeria maculans). In addition, it was established that tetradeuterated brassinin was incorporated into the phytoalexin brassilexin in B. juncea and B. rapa. On the other hand, the tetradeuterated indole glucosinolate glucobrassicin was not incorporated into brassinin, although the chemical structures of brassinins and indole glucosinolates suggest an interconnected biogenesis. Importantly, tetradeuterated indole-3-acetaldoxime was an efficient precursor of phytoalexins brassinin, brassilexin, and spirobrassinin. Elicitation experiments in tissues of Brassica juncea and B. rapa showed that indole-3-acetonitrile was an inducible metabolite produced in leaves and stems of B. juncea but not in B. rapa. Indole-3-acetonitrile displayed antifungal activity similar to that of brassilexin, was metabolized by the blackleg fungus at slower rates than brassinin, cyclobrassinin, or brassilexin, and appeared to be involved in defense responses of B. juncea.  相似文献   

9.
Potential inhibitors of Leptosphaeria maculans mediated detoxification of the phytoalexin brassilexin were designed and synthesized based on the planar heteroaromatic structure of isothiazolo[5,4-b]indole. Screening of these compounds for inhibition of brassilexin detoxification in cultures of L. maculans indicated that 4-(2-chlorophenyl)isothiazole had the largest effect on the rate of brassilexin detoxification. However, the most antifungal compound among the potential inhibitors, isothiazolo[5,4-b]quinoline, did not appear to affect the metabolism of brassilexin noticeably, suggesting that growth inhibition is not sufficient to slow down the rate of brassilexin detoxification. Furthermore, it was determined that 4-arylisothiazoles as well as isothiazolo[5,4-b]thianaphthene displayed antifungal activity against L. maculans.  相似文献   

10.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

11.
Seeking neutral sphingomyelinase inhibitors, we designed and synthesized hydrolytically stable analogues of sphingomyelin. These novel analogues replace the phosphodiester moiety of sphingomyelin with carbamate and urea moiety, resulting in inhibition of neutral sphingomyelinase. Compound 1 prevented ceramide generation and apoptotic neuronal cell death in a model of ischemia based on organotypic hippocampal slice cultures.  相似文献   

12.
Brassinin oxidase, a fungal detoxifying enzyme that mediates the conversion of the phytoalexin brassinin into indole-3-carboxaldehyde, is the first enzyme described to date that catalyzes the transformation of a dithiocarbamate group into an aldehyde equivalent. Brassinin is an essential phytoalexin due to its antifungal activity and its role as biosynthetic precursor of other phytoalexins produced in plants of the family Brassicaceae (common name crucifer). In this report, the isolation, structure determination and synthesis of the elusive co-product of brassinin transformation by brassinin oxidase, S-methyl dithiocarbamate, the syntheses of dideuterated and (R) and (S) monodeuterated brassinins, kinetic analyses of isotope effects and chemical modifications of brassinin oxidase are described. The reaction of [1'-(2)H(2)]brassinin was found to be slowed by a kinetic isotope effect of 5.3 on the value of k(cat)/K(m). This result indicates that the hydride/hydrogen transfer step preceding brassinin transformation is rate determining in the overall reaction. In addition, the use of (R) and (S)-[1'-(2)H]brassinins as substrates indicated that the hydride/hydrogen transfer step is ca. 88% stereoselective for the pro-R hydrogen. A detailed chemical mechanism of the enzymatic transformation of brassinin is proposed.  相似文献   

13.
The effects of the cruciferous phytoalexin brassinin on the protein expression patterns of the phytopathogenic fungus Alternaria brassicicola were investigated. Cell-free protein extracts of mycelia of A. brassicicola induced with brassinin at 0.50 and 0.10 mm were fractionated, and the proteins in soluble fractions were separated by two-dimensional electrophoresis. Spots corresponding to differentially expressed proteins were digested and analysed by liquid chromatography-electrospray ionization-mass spectrometry. The number of differentially expressed proteins was significantly higher in mycelia treated with brassinin at 0.50 mm (96 protein spots) than in mycelia treated with brassinin at 0.10 mm (18 protein spots). The majority of differentially expressed proteins included proteins involved in metabolism, processing, synthesis and several heat shock proteins (HSPs). Brassinin concentrations below 0.30 mm induced HSP90, a protein involved in the regulation of morphogenetic signalling in fungi, suggesting that 0.30 mm is a minimal concentration of brassinin necessary for the protection of brassicas against A. brassicicola. These results reveal that HSP90 is a potential target for inhibition in stressed A. brassicicola and confirm that brassinin has strong detrimental effects on A. brassicicola, suggesting that its detoxification by the fungus suppresses an important defence layer of the plant.  相似文献   

14.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with Ps > 5.0 × 10− 6 cm/s at 10 °C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (Ea > 10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by > 60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

15.
16.
The loculoascomycete Leptosphaeria maculans (anamorph: Phoma lingam) causes blackleg of Brassicas, including Brassica napus (canola or rapeseed). This fungus probably comprises several morphologically similar species; taxonomic relationships between them are being clarified and nomenclature is being revised. The pathotype ("A" group) responsible for major economic losses to canola has been studied in more detail than other members of this species complex and is the focus of this review. L. maculans is haploid, outcrossing, can be transformed, and has a genome size of about 34 Mb. Preliminary genetic and physical maps have been developed and three genes involved in host specificity have been mapped. As yet, few genes have been characterized. Chemical analysis of fungal secondary metabolites has aided understanding of taxonomic relationships and of the host-fungal interaction by the unraveling of pathways for detoxification of antimicrobial phytoalexins. Several phytotoxins (host and nonhost specific) have been identified and a complex pattern of regulation of their synthesis by fungal and host metabolites has been discovered.  相似文献   

17.
The equilibrium exchange of [14C]urea and ethylene glycol was measured using a new type of fast flow system. Approximately equal volumes of saline and air were mixed to form a segmented fluid stream into which 14C-loaded red cells are injected. The stream flows through three filter chambers which allow sampling of the 14C in the extracellular fluid at three time points. The chambers are designed so that they do not disrupt the segmented bubble pattern. The alternating air and saline segments prevent laminar dispersion in the flowing stream and ensure good mixing at the injection and sampling sites. The equilibrium exchange of both urea and ethylene glycol showed saturation kinetics. The maximum permeability (Po) measured in the limit of zero solute concentration is 1.6 X 10(-3) cm/s for urea and 4.8 X 10(-4) cm/s for ethylene glycol (T = 23 degrees C). The apparent dissociation constant (Km) was 218 mM for urea and 175 mM for ethylene glycol. The Po for thiourea is 2.3 X 10(-6) cm/s and the Km is 19 mM. Urea and thiourea inhibit the transport of each other and the inhibition constant (KI) is approximately equal to the Km for both compounds. 53 other analogues of urea were screened for their inhibition of urea or thiourea transport. Several analogues [e.g., 1-(3,4-dichloro-phenyl)-2-thiourea] had a KI in the range of 0.03 mM. The affinity of the inhibitor increased as it was made more hydrophobic. The urea analogues did not significantly inhibit the ethylene glycol or osmotic permeability. Glycerol inhibited ethylene glycol permeability with a KI of 1,200 mM.  相似文献   

18.
Phytopathogenic fungi are able to overcome plant chemical defenses through detoxification reactions that are enzyme mediated. As a result of such detoxifications, the plant is quickly depleted of its most important antifungal metabolites and can succumb to pathogen attack. Understanding and predicting such detoxification pathways utilized by phytopathogenic fungi could lead to approaches to control plant pathogens. Towards this end, the inhibitory activities and metabolism of the cruciferous phytoalexins camalexin, brassinin, cyclobrassinin, and brassilexin by the phytopathogenic fungus Botrytis cinerea Pers. (teleomorph: Botryotinia fuckeliana) was investigated. Brassilexin was the most antifungal of the phytoalexins, followed by camalexin, cyclobrassinin and brassinin. Although B. cinerea is a species phylogenetically related to the phytopathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary, contrary to S. sclerotiorum, detoxification of strongly antifungal phytoalexins occurred via either oxidative degradation or hydrolysis but not through glucosylation, suggesting that glucosyl transferases are not involved. A strongly antifungal bisindolylthiadiazole that B. cinerea could not detoxify was discovered, which resulted from spontaneous oxidative dimerization of 3-indolethiocarboxamide, a camalexin detoxification product.  相似文献   

19.
王文瑞  董敏 《生物工程学报》2023,39(11):4428-4444
甲基化在生物学过程中发挥着重要作用。S-腺苷-L-甲硫氨酸(S-adenosyl-L-methionine, SAM)作为一种广泛存在于生命体中的辅因子,是大多数生物甲基化反应的甲基供体。SAM依赖型甲基转移酶(methyltransferases, MTase)通过将甲基从SAM分子特异性转移到底物,从而改变底物分子的各种理化性质和生物活性。近年来,许多具有替代甲基取代基的SAM类似物被合成并应用于甲基转移酶,以将不同修饰的基团特异性地转移到甲基转移酶的底物上,从而引入标记官能团或者新的烷基修饰。本文主要综述了近年来该领域不同SAM甲基类似物在合成和应用方面取得的进展,并对这一领域未来的研究方向进行展望。  相似文献   

20.
Certain derivatives and analogues of capsazepine are potent in vitro inhibitors of bronchoconstriction in human small airways. During an investigation of the dependency of the potency on the structural features of the capsazepinoids in the thiourea moiety (coupling region) and the 2-(4-chlorophenyl)ethyl moiety (C-region), it was revealed that capsazepinoids with a thiourea or an amide link between the B-ring and the C-region in general have a good bronchorelaxing activity, while urea is a less attractive choice. Further, it was shown that 1,2,3,4-tetrahydroisoquinolines with a 2-(phenyl)ethyl derivative as the C-region are considerably more potent than those with an octyl group, while 2,3,4,5-tetrahydro-1H-2-benzazepines were found to be more insensitive to the nature of the C-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号