首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siegel AJ  Freedman C  Page RE 《PloS one》2012,7(4):e33465
Honey bees are a model system for the study of division of labor. Worker bees demonstrate a foraging division of labor (DOL) by biasing collection towards carbohydrates (nectar) or protein (pollen). The Reproductive ground-plan hypothesis of Amdam et al. proposes that foraging DOL is regulated by the networks that controlled foraging behavior during the reproductive life cycle of honey bee ancestors. Here we test a proposed mechanism through which the ovary of the facultatively sterile worker impacts foraging bias. The proposed mechanism suggests that the ovary has a regulatory effect on sucrose sensitivity, and sucrose sensitivity impacts nectar loading. We tested this mechanism by measuring worker ovary size (ovariole number), sucrose sensitivity, and sucrose solution load size collected from a rate-controlled artificial feeder. We found a significant interaction between ovariole number and sucrose sensitivity on sucrose solution load size when using low concentration nectar. This supports our proposed mechanism. As nectar and pollen loading are not independent, a mechanism impacting nectar load size would also impact pollen load size.  相似文献   

2.
SYNTHETIC QUEEN MANDIBULAR GLAND PHEROMONE (QMP) WAS APPLIED TO HONEY BEE COLONIES TO TEST TWO HYPOTHESES: (i) QMP acts like a primer pheromone in the regulation of age-related division of labor, and (ii) this primer effect, if present, varies in three strains of workers that show genetically-based differences in their retinue attraction response to QMP (a pheromone releaser effect). Strains of workers that were high, or low in their response to QMP in a laboratory bioassay, as well as unselected 'wild-type' workers, were fostered in queenright colonies with or without supplemental QMP. Effects of QMP on foraging ontogeny and juvenile hormone III (JH) blood titers in worker honey bees were measured. Bees in QMP-supplemented colonies showed significant delays in foraging ontogeny, and foraging activity was reduced. They also had significantly lower JH titers, although the titer curves were somewhat atypical. There were no differences in foraging ontogeny or JH titers among the three strains. We conclude that (i) QMP can delay the ontogeny of foraging by some mechanism that suppresses JH production, (ii) this QMP primer response is independent of the retinue releaser response, and (iii) QMP can play an important role in regulating division of labour.  相似文献   

3.
Hormone analyses and exocrine gland measurements were made to probe for physiological correlates of division of labor among similarly aged adult worker honey bees (Apis mellifera L.). Middle-age bees (ca. 2 weeks old) performing different tasks showed significant differences in both juvenile hormone (JH) biosynthesis rates and hemolymph titers; guards and undertakers had high JH, and wax producers and food storers, low JH. Guards and undertakers had similar hormone levels to foragers, even though they were 10 days younger than foragers. No differences in JH were detected among young bees (1-week-old queen attendants and nurses) or older bees (3–4 week-old pollen foragers, non-pollen foragers, and soldiers). Hypopharyngeal gland size was inversely correlated with worker age and rate of JH biosynthesis, but soldiers had significantly larger hypopharyngeal glands than did foragers, despite their similar age and JH level. Results from soldiers indicate that exocrine gland development is not always linked with age-related behavior and endocrine development; they also support the recent claim that soldiers constitute a group of older bees that are distinct from foragers. Hormonal analyses indicate that the current model of JH's role in honey bee division of labor needs to be expanded because high levels of JH are associated with several other tasks besides foraging. JH may be involved in the regulation of division of labor among similarly aged workers in addition to its role in age-related division of labor.Abbreviations JH Juvenile hormone - RIA radioimmunoassay - CA corpora allata - HPLC high performance liquid chromatography - TLC thin layer chromatography  相似文献   

4.
5.
Studies on the role of juvenile hormone (JH) in adult social Hymenoptera have focused on the regulation of two fundamental aspects of colony organization: reproductive division of labor between queens and workers and age-related division of labor among workers. JH acts as a gonadotropin in the primitively eusocial wasp and bumble bee species studied, and may also play this role in the advanced eusocial fire ants. However, there is no evidence that JH acts as a traditional gonadotropin in the advanced eusocial honey bee or in the few other ant species that have recently begun to be studied. The role of JH in age-related division of labor has been most thoroughly examined in honey bees. Results of these studies demonstrate that JH acts as a “behavioral pacemaker,” influencing how fast a worker grows up and makes the transition from nest activities to foraging. Hypotheses concerning the evolutionary relationship between the two functions of JH in adult eusocial Hymenoptera are discussed. Arch. Insect Biochem. Physiol. 35:559–583, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Methoprene, a juvenile hormone (JH) analog, is a widely used insecticide that also accelerates behavioral development in honey bees (Apis mellifera). JH regulates the transition from nursing to foraging in adult worker bees, and treatment with JH or methoprene have both been shown to induce precocious foraging. To determine how methoprene changes honey bee behavior, we compared JH titers of methoprene‐treated and untreated bees. Behavioral observations confirmed that methoprene treatment significantly increased the number of precocious foragers in 3 out of 4 colonies. In only 1 out of 4 colonies, however, was there a significant difference in JH titers between the methoprene‐treated and control bees. Further, in all 4 colonies, there was no significant differences in JH titers between precocious and normal‐aged foragers. These results suggest that methoprene did not directly affect the endogenous JH secreted by corpora allata. Because methoprene caused early foraging without changing workers’ JH titers, we conclude that methoprene most likely acts directly on the JH receptors as a substitute for JH.  相似文献   

7.
Bumblebee workers vary greatly in size, unlike workers of most other social bees. This variability has not been adequately explained. In many social insects, size variation is adaptive, with different-sized workers performing different tasks (alloethism). Here we established whether workers of the bumblebee, Bombus terrestris (L.) (Hymenoptera; Apidae), exhibit alloethism. We quantified the size of workers engaging in foraging compared to those that remain in the nest, and confirmed that it is the larger bees that tend to forage (X±SE thorax widths 4.34±0.01 mm for nest bees and 4.93±0.02 mm for foragers). We then investigated whether large bees are better suited to foraging because they are able to transport heavier loads of food back to the nest. Both pollen and nectar loads of returning foragers were measured, demonstrating that larger bees do return with a heavier mass of forage. Foraging trip times were inversely related to bee size when collecting nectar, but were unrelated to bee size for bees collecting pollen. Overall, large bees brought back more nectar per unit time than small bees, but the rate of pollen collection appeared to be unrelated to size. The smallest foragers had a nectar foraging rate close to zero, presumably explaining why foragers tend to be large. Why might larger bees be better at foraging? Various explanations are considered: larger bees are able to forage in cooler conditions, may be able to forage over larger distances, and are perhaps also less vulnerable to predation. Conversely, small workers are presumably cheaper to produce and may be more nimble at within-nest tasks. Further research is needed to assess these possibilities. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

8.
A rising blood titer of juvenile hormone (JH) in adult worker honey bees is associated with the shift from working in the hive to foraging. We determined whether the JH increase occurs in anticipation of foraging or whether it is a result of actual foraging experience and/or diurnal changes in exposure to sunlight. We recorded all foraging flights of tagged bees observed at a feeder in a large outdoor flight cage. We measured JH from bees that had taken 1, 3-5, or >100 foraging flights and foragers of indeterminate experience leaving or entering the hive. To study diurnal variation in JH, we sampled foragers every 6h over one day. Titers of JH in foragers were high relative to nurses as in previous studies, suggesting that conditions in the flight cage had no effect on the relationship between foraging behavior and JH. Titers of JH in foragers showed no significant effects of foraging experience, but did show significant diurnal variation. Our results indicate that the high titer of JH in foragers anticipates the onset of foraging and is not affected by foraging experience, but is modulated diurnally.  相似文献   

9.
10.
Regulation of pollen and nectar foraging in honeybees is linked to differences in the sensitivity to the reward. Octopamine (OA) participates in the processing of reward-related information in the bee brain, being a candidate to mediate and modulate the division of labour among pollen and nectar foragers. Here we tested the hypothesis that OA affects the resource preferences of foragers. We first investigated whether oral administration of OA is involved in the transition from nectar to pollen foraging. We quantified the percentage of OA-treated bees that switched from a sucrose solution to a pollen feeder when the sugar concentration was decreased experimentally. We also evaluated if feeding the colonies sucrose solution containing OA increases the rate of bees collecting pollen. Finally, we quantified OA and tyramine (TYR) receptor genes expression of pollen and nectar foragers in different parts of the brain, as a putative mechanism that affects the decision-making process regarding the resource type collected. Adding OA in the food modified the probability that foragers switch from nectar to pollen collection. The proportion of pollen foragers also increased after feeding colonies with OA-containing food. Furthermore, the expression level of the AmoctαR1 was upregulated in foragers arriving at pollen sources compared with those arriving at sugar-water feeders. Using age-matched pollen and nectar foragers that returned to the hive, we detected an upregulated expression of a TYR receptor gene in the suboesophageal ganglia. These findings support our prediction that OA signalling affects the decision in honeybee foragers to collect pollen or nectar.  相似文献   

11.
Honeybees show a remarkable behavioral plasticity at the transition from nursing inside the hive to foraging for nectar and/or pollen outside. This plasticity is important for age‐related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs), brain centers for sensory integration, learning, and memory. We tested whether precocious sensory exposure to light leads to changes in the density of synaptic complexes [microglomeruli (MG)] in the MBs. The results show that exposure to light pulses over 3 days induces a significant decrease in the MG density in visual subregions (collar) of the MB. Earlier studies had shown that foragers have increased levels of juvenile hormone (JH) co‐occurring with a decrease of vitellogenin (Vg). Previous work further established that RNAi‐mediated knockdown of vg and ultraspiracle (usp) induced an upregulation of JH levels, which can lead to precocious foraging. By disturbing both Vg and JH pathways using gene knockdown of vg and usp, we tested whether the changes in the hormonal system directly affect MG densities. Our study shows that MG numbers remained unchanged when Vg and JH pathways were perturbed, suggesting no direct hormonal influences on MG densities. However, mass spectrometry detection of JH revealed that precocious light exposure triggered an increase in JH levels in the hemolymph (HL) of young bees. This suggests a dual effect following light exposure via direct effects on MG reorganization in the MB calyx and a possible positive feedback on HL JH levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1141–1153, 2014  相似文献   

12.
Nectar is a vital source of energy for bees and other pollinators and pollen represents the only source of protein in the diet of bees. Nectar and pollen quality and quantity can therefore affect foraging choices. Strawberry, Fragaria × ananassa (Rosaceae), is a flowering crop that requires insect pollination for the berries to develop optimally. The solitary red mason bee, Osmia bicornis L. (Hymenoptera: Megachilidae), occurs naturally but like the eusocial western honeybee, Apis mellifera mellifera L. (Hymenoptera: Apidae), it is also a commercially reared pollinator used in strawberry production. We hypothesized that strawberry nectar and pollen quality would affect the foraging choice of these two types of bees. In this study nectar and pollen quality is represented by various levels of sugar and protein content, respectively, as well as the number of open strawberry flowers in the experimental field, would affect the foraging choice of these two types of bees. Consistent with previous studies, we found significant and major differences between strawberry varieties in proportions of sucrose in the nectar sugar and in pollen viability – a proxy for pollen protein content. All measured parameters had a significant effect on red mason bee visitation frequency. Contrary to expectations, honeybee foraging behavior was only affected by the number of open flowers and not by any of the quality parameters measured. Our findings indicate that red mason bees were capable of assessing nectar and pollen quality and prioritize accordingly. The pattern observed indicates that individual red mason bees changed foraging focus between strawberry varieties depending on whether nectar or pollen was collected. Our results suggest that targeted breeding of varieties toward high levels of nectar sugar and sucrose concentrations and high pollen protein content may increase pollination success from red mason bees and possibly other solitary bees.  相似文献   

13.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

14.
Honey bees collect distinct nutrient sources in the form ofnectar (energy) and pollen (nitrogen). We investigated the effectof varying energy stores on nectar and pollen foraging. We foundno significant changes in nectar foraging in response to changesin honey storage levels within colonies. Individual foragersdid not vary activity rates or nectar load sizes in responseto changes in honey stores, and colonies did not increase nectarintake rates when honey stores within the hive were decreased.This result contrasts with pollen foraging behavior, which isextremely sensitive to colony state. Our data show that individualforaging decisions during nectar collection and colony regulationof nectar intake are distincdy different from pollen foraging.The behavior of honey bees illustrates that foraging strategy(and therefore foraging models) can incorporate multiple currencies,including both energy and protein intake.[Behav Ecol 7: 286–291(1996)]  相似文献   

15.
Bees foraging for nectar should choose different inflorescences from those foraging for both pollen and nectar, if inflorescences consist of differing proportions of male and female flowers, particularly if the sex phases of the flowers differ in nectar content as well as the occurrence of pollen. This study tested this prediction using worker honey bees (Apis mellifera L.) foraging on inflorescences of Lavandula stoechas. Female flowers contained about twice the volume of nectar of male flowers. As one would predict, bees foraging for nectar only chose inflorescences with disproportionately more female flowers: time spent on the inflorescence was correlated with the number of female flowers, but not with the number of male flowers. Inflorescence size was inversely correlated with the number of female flowers, and could be used as a morphological cue by these bees. Also as predicted, workers foraging for both pollen and nectar chose inflorescences with relatively greater numbers of both male and female flowers: time spent on these inflorescences was correlated with the number of male flowers, but not with the number of females flowers. A morphological cue inversely associated with such inflorescences is the size of the bract display. Choice of flowers within inflorescences was also influenced predictably, but preferences appeared to be based upon corolla size rather than directly on sex phase.  相似文献   

16.
Size-related selection of food plants by bumblebees   总被引:1,自引:0,他引:1  
Abstract. 1. A positive correlation between the tongue length of conspecific workers collecting nectar from seven plant species and the corolla length of the flowers probed was found for B.lapidarius and B.pascuomm but not B.terrestris . No simple relationship was found between the volume, sugar weight or concentration of nectar in flowers and the tongue or wing length of probing bees.
2. B.terrestris workers collecting pollen from four plant species producing pollen only, were found to differ in size according to the type of pollen presentation mechanism and the pollen content per flower. Body size variation was also related to the foraging of pollen plus nectar from two other plant species.  相似文献   

17.
18.
Summary: Size polymorphism is an important life history trait in bumblebees with strong impact on individual behavior and colony organization. Within a colony larger workers tend to serve as foragers, while smaller workers fulfill in-hive tasks. It is often assumed that size-dependent division of labor relates to differences in task performance. In this study we examined size-dependent interindividual variability in foraging, i.e. whether foraging behavior and foraging capability of bumblebee workers are affected by their size. We observed two freely foraging Bombus terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibited a significantly higher foraging rate than small foragers. None of the other three foraging parameters was affected by worker size. Thus, large foragers contributed disproportionately more to the current nectar influx of their colony. We provide a detailed discussion of the possible proximate mechanisms underlying the differences in foraging rate.  相似文献   

19.
Bees derived from artificially selected high- and low-pollen-hoarding strains were tested for their proboscis extension reflex response to water and varying sucrose concentrations. High-strain bees had a lower response threshold to sucrose than low-strain bees among pre-foragers, foragers, queens and drones. Pre-foraging low-strain workers showed ontogenetic changes in their response threshold to sucrose which was inversely related to age. High-strain foragers were more likely to return with loads of water compared to low-strain foragers. Whereas low-strain foragers were more likely to return with loads of nectar. Low-strain nectar foragers collected nectar with significantly higher sucrose concentrations than did the high-strain nectar foragers. Alternatively, low-strain foragers were more likely to return empty compared to high-strain foragers. These studies demonstrate how a genotypically varied sensory-physiological process, the perception of sucrose, are associated with a division of labor for foraging. Accepted: 27 October 1998  相似文献   

20.
There is an age-related division of labor in the honey bee colony that is regulated by juvenile hormone. After completing metamorphosis, young workers have low titers of juvenile hormone and spend the first several weeks of their adult lives performing tasks within the hive. Older workers, approximately 3 weeks of age, have high titers of juvenile hormone and forage outside the hive for nectar and pollen. We have previously reported that changes in the volume of the mushroom bodies of the honey bee brain are temporally associated with the performance of foraging. The neuropil of the mushroom bodies is increased in volume, whereas the volume occupied by the somata of the Kenyon cells is significantly decreased in foragers relative to younger workers. To study the effect of flight experience and juvenile hormone on these changes within the mushroom bodies, young worker bees were treated with the juvenile hormone analog methoprene but a subset was prevented from foraging (big back bees). Stereological volume estimates revealed that, regardless of foraging experience, bees treated with methoprene had a significantly larger volume of neuropil in the mushroom bodies and a significantly smaller Kenyon cell somal region volume than did 1-day-old bees. The bees treated with methoprene did not differ on these volume estimates from untreated foragers (presumed to have high endogenous levels of juvenile hormone) of the same age sampled from the same colony. Bees prevented from flying and foraging nonetheless received visual stimulation as they gathered at the hive entrance. These results, coupled with a subregional analysis of the neuropil, suggest a potentially important role of visual stimulation, possibly interacting with juvenile hormone, as an organizer of the mushroom bodies. In an independent study, the brains of worker bees in which the transition to foraging was delayed (overaged nurse bees) were also studied. The mushroom bodies of overaged nurse bees had a Kenyon cell somal region volume typical of normal aged nurse bees. However, they displayed a significantly expanded neuropil relative to normal aged nurse bees. Analysis of the big back bees demonstrates that certain aspects of adult brain plasticity associated with foraging can be displayed by worker bees treated with methoprene independent of foraging experience. Analysis of the over-aged nurse bees suggests that the post-metamorphic expansion of the neuropil of the mushroom bodies of worker honey bees is not a result of foraging experience. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号