首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian rhythms from multiple oscillators: lessons from diverse organisms   总被引:1,自引:0,他引:1  
The organization of biological activities into daily cycles is universal in organisms as diverse as cyanobacteria, fungi, algae, plants, flies, birds and man. Comparisons of circadian clocks in unicellular and multicellular organisms using molecular genetics and genomics have provided new insights into the mechanisms and complexity of clock systems. Whereas unicellular organisms require stand-alone clocks that can generate 24-hour rhythms for diverse processes, organisms with differentiated tissues can partition clock function to generate and coordinate different rhythms. In both cases, the temporal coordination of a multi-oscillator system is essential for producing robust circadian rhythms of gene expression and biological activity.  相似文献   

2.
The endogenous circadian program enables organisms to cope with the temporal ecology of their environment. It is driven by a molecular pacemaker, which is found in animals as well as plants at the level of the single cell. Unicellular organisms are, therefore, ideal model systems for the study of circadian systems because rhythms can be investigated in single cells at the molecular, physiological, behavioral and environmental level. In this review, we discuss the possible driving forces for the evolution of circadian rhythmicity in unicellular marine organisms. The current knowledge about the cellular and molecular mechanisms involved in the different components of the circadian system (input, oscillator and output) are described primarily with reference to the marine dinoflagellate,Gonyaulax polyedra. Light is the most important and best described environmental signal synchronizing the endogenous rhythms to the 24-hour solar day. However, little is known about the nature of circadian light receptors, which appear to be distinct from those that control behavioral light responses such as phototaxis. It has recently been shown inGonyaulaxthat nutrients, namely nitrate, can act as a non-photic zeitgeber for the circadian system. In this alga, bioluminescence is under circadian control, and the molecular mechanisms of this circadian output have been investigated in detail. The circadian program turns out to be more complex than simply consisting of an input pathway, a pacemaker and the driven rhythms. Different rhythms appear to be controlled by separate pacemakers, even in single cells, and both circadian inputs and outputs contain feedback loops. The functional advantages of this complexity are discussed. Finally, we outline the differences between the circadian program under laboratory and natural conditions.  相似文献   

3.
Circadian (∼24 h) clock regulated biological rhythms have been identified in a wide range of organisms from prokaryotic unicellular cyanobacteria to higher mammals. These rhythms regulate an enormous variety of processes including gene expression, metabolic processes, activity and reproduction. Given the widespread occurrence of circadian systems it is not surprising that extensive efforts have been directed at understanding the adaptive significance of circadian rhythms. In this review we discuss the approaches and findings that have resulted. In studies on organisms in their natural environments, some species show adaptations in their circadian systems that correlate with living at different latitudes, such as clines in circadian clock properties. Additionally, some species show plasticity in their circadian systems suggested to match the demands of their physical and social environment. A number of experiments, both in the field and in the laboratory, have examined the effects of having a circadian system that does not resonate with the organism's environment. We conclude that the results of these studies suggest that having a circadian system that matches the oscillating environment is adaptive.  相似文献   

4.
Circadian oscillations are a fundamental biological property from bacteria to humans. The molecular mechanisms which produce a ca 24-h rhythmicity are still unknown but it has become clear that they are part of the biochemical machinery of the single cell. The cellular circadian system can be favorably studied in single-cell organisms such as the dinoflagellate Gonyaulax polyedra . The complexity of this circadian model system, which consists of at least two circadian oscillators, receives light via two input systems with different spectral sensitivities, and has several feed–back loops between the central oscillator(s) and the environment, is described here.  相似文献   

5.
Circadian rhythms in plants: a millennial view   总被引:5,自引:0,他引:5  
Circadian rhythms are endogenous rhythms with periods of approximately 24 h. These rhythms are widespread both within any given organism and among diverse taxa. As genetic and molecular biological studies, primarily in a subset of model organisms, have begun to identify the components of circadian systems, there is optimism that we will soon achieve a detailed molecular understanding of circadian timing mechanisms. Although plants have provided many examples of rhythmic outputs, and our understanding of photoreceptors of circadian input pathways is well-advanced, plants have lagged behind other groups of organisms in the identification of components of the central circadian oscillator. However, there are now a number of promising candidates for components of plant circadian clocks, and it seems probable that we will soon know the details of a plant central oscillator. Moreover, there is also accumulating evidence that plants and other organisms house multiple circadian clocks, both in different tissues and, quite probably, within individual cells. This provides an unanticipated level of complexity with the potential for interaction among these multiple oscillators.  相似文献   

6.
Cyanobacteria are the simplest organisms known to exhibit circadian rhythms and have provided experimental model systems for the dissection of basic properties of circadian organization at the molecular, physiological, and ecological levels. This review focuses on the molecular and genetic mechanisms of circadian rhythm generation in cyanobacteria. Recent analyses have revealed the existence of multiple feedback processes in the prokaryotic circadian system and have led to a novel molecular oscillator model. Here, the authors summarize current understanding of, and open questions about, the cyanobacterial oscillator.  相似文献   

7.
Molecular machinery of the circadian clock in mammals   总被引:11,自引:0,他引:11  
  相似文献   

8.
9.
10.
The molecular basis of circadian homeostasis has proven to be amenable to genetic dissection in many model organisms. Surprisingly, additional factors contributing to an organism’s “chronotype” continue to be identified using both forward and reverse genetics. As more factors are identified, the importance of rhythm regulation in all body systems is becoming apparent. Moreover, recent evidence confirms that the regulation of circadian homeostasis can be fine-tuned at a number of molecular levels. This not only ensures that biological rhythms are maintained at a robust level in all cells but also allows for the precise and rapid readjustment of rhythms in response to environmental factors.  相似文献   

11.
The earth rotates on its own axis while orbiting around the sun. This regular movement of the solar system results in cyclic changes of the light condition of the earth with a period of 24 h, although the lengths of daytime and nighttime depend on the latitude. The organisms living on the earth have evolved an internal time-measuring system called the "circadian clock," which ticks with a period of approximately 24 h in order to adapt to the environment and to anticipate the next cycle. The fact that most of existing organisms retain the circadian clock suggests that the clock-ownership must have been advantageous over non-ownership during their evolution. Here I will introduce the background of the research field of circadian rhythm and present an outline of this Special Review series, which is composed of three articles that review recent research into the molecular mechanisms of the three types of circadian clock systems in vertebrates.  相似文献   

12.
13.
Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF) has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.  相似文献   

14.
15.
The circadian clock arose early in the evolution of life to enable organisms to adapt to the cycle of day and night. Recently, the extent and importance of circadian regulation of behaviour and physiology has come to be more fully realized. Core molecular cogs of circadian oscillators appear to have been largely conserved between such diverse organisms as Drosophila melanogaster and mammals. However, gene duplication events have produced multiple copies of many clock genes in mammals. Recent studies suggest that genome duplication has lead to increased circadian complexity and local tissue regulation. This has important implications for temporal regulation of behaviour via multiple clocks in the central nervous system, and also extends to the local physiology of major body organs and tissues.  相似文献   

16.
生物钟基因研究新进展   总被引:6,自引:1,他引:5  
李经才  于多  王芳  何颖 《遗传》2004,26(1):89-96
生物钟基因普遍存在于生物界,其作用在于产生和控制昼夜节律的运转。生物钟基因及其编码的蛋白质组成反馈回路,维持振荡系统持续进行并与环境周期保持同步。各级进化水平物种生物钟的基因组成和控制途径有同有异。此文主要介绍蓝细菌、脉孢菌、果蝇、鼠和人昼夜钟的分子运作机制以及研究钟基因的意义和展望。 Abstract:The circadian clock genes,which generate and control the running of the circadian rhythms,exist in organisms ranging from prokaryotes to mammals.The oscillator genes and its coding proteins compose the feedback loops of circadian system.The kind,number and regulating route of clock genes are characterized by living things at different evolution levels.The molecular mechanism of the run of circadian clock genes in cyanobacteria,neurospore,fruit fly,mouse and human being is introduced in this article.  相似文献   

17.
18.
While a number of physiological and biochemical processes in plants have been found to be regulated in a circadian manner, the mechanism underlying the circadian oscillator remains to be elucidated. Advances in the identification and characterization of components of the plant circadian system have been made largely through the use of genetics in Arabidopsis thaliana. Results so far indicate that the generation of rhythmicity by the Arabidopsis clock relies on molecular mechanisms that are similar to those described for other organisms, but that a totally different set of molecular components has been recruited to perform these functions.  相似文献   

19.
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption. (Author correspondence: g.mazzoccoli@operapadrepio.it)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号