首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
  • 1 The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations.
  • 2 The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. The use of gamma radiation to induce sterility, however, negatively affects both somatic cells as well as reproductive cells. Consequently, mating performance of sterilized individuals decreases drastically over time. The mating propensity of sterilized Euscepes postfasciatus (Fairmaire) males irradiated with a single dose of 150 Gy (the current standard of the Okinawa Prefecture SIT programme) is equal to that of non‐irradiated weevils for the first 6 days.
  • 3 Fractionated irradiation, in which a sterilizing dose is delivered over time in a series of smaller irradiations, reduces the damage of irradiation in insects. In the present study, we evaluated the effect of fractionated irradiation on male fertilization ability, longevity and mating propensity of E. postfasciatus for a period of 16 days after irradiation.
  • 4 Although fractionated irradiation totalling 150 Gy was found to induce full sterility regardless of the number of individual doses, the mating propensity of male weevils sterilized by fractionated irradiation was maintained for the first 12 days. These results demonstrate that fractionated irradiation can be highly advantageous in programmes aimed at eradication of E. postfasciatus.
  相似文献   

2.
The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations. Although the effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females, the use of gamma radiation to induce sterility negatively impacts reproductive cells as well as somatic cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. In the current study, we evaluated the effect of irradiation dose intensity on fertility, mating propensity, and mating competitiveness in sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae), for 16 d after irradiation. Although the mating propensity of males irradiated with 200 Gy, the dose currently used to induce complete sterility of C. f. elegantulus in the SIT program in Okinawa Prefecture, was equal to that of nonirradiated weevils for the first 6 d, the mating propensity of males irradiated with doses between of 75 and 150 Gy was maintained for the first 12 d. The potential fertilization ability of weevils was highly depressed compared with the control weevils, even in those treated with 75 Gy. Mating performance was severely compromised in weevils that were irradiated with a dose of 100 Gy or more. These results demonstrate that partial sterilization can be highly advantageous in eradication programs for the sweetpotato weevil. We discuss the advantages of the application of partial irradiation in insect eradication programs.  相似文献   

3.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

4.
The effectiveness of the sterile insect technique (SIT) depends on the ability of released sterile males to mate with and inseminate wild females, but the use of gamma radiation to induce sterility negatively affects both somatic and reproductive cells of the sterilized insects. Recently, the effectiveness of fractionated-dose irradiation (FI), in which a sterilizing dose is delivered over time in a series of small irradiations, has been demonstrated in the West Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire). FI improves male mating propensity compared with acute irradiation; however, this renewed technique takes a long time (72 h in the present circumstances) compared with the traditional technique (approximately 20 min) using single-dose irradiation (150 Gy) to fully sterilize this weevil. The extra time required by FI might negatively affect the quality of released sterile males, because weevils expend limited resources, such as metabolic energy or sperm, in mating freely in this period. We evaluated whether the temporal storage of weevils at low temperature (5°C and 15°C) improves the quality of sterile males compared with the normal condition (25°C). Temporal storage at low temperature in FI improves male mating propensity. For example, the sexually active phase of males exposed to 15°C was 18 days at least after irradiation. This period was longer than that of normal males (14 days). Meanwhile, this manner delayed male reproductive development and temporarily reduced mating competitiveness ability. If considering the long active phase of sterile males exposed to 15°C, these disadvantage would be cancelled out. We discuss the advantage of FI with temporal storage at low temperature in the eradication program using SIT for E. postfasciatus.  相似文献   

5.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation not only damages the reproductive cells but the somatic cells as well. The mating behavior of irradiated males may be altered over time due to the depressed metabolic activity brought about by sterilization. In this study, we evaluated the mating behavior (copulation behavior, mating performance, and ability of sperm transfer) of irradiated males in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 16 days after irradiation in the laboratory. The mating performance of males irradiated with a 150 Gy dose, as currently used in the SIT program in Okinawa prefecture for E. postfasciatus, decreased compared to that of control after day 7. As a result, we considered that irradiation had no major effect on male mating behavior for approximately 1 week after irradiation.  相似文献   

6.
The West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) is a major pest of sweet potato Ipomoea batatas (L.) in the tropical and subtropical regions. The sterile insect technique (SIT) could be used as one of the most effective methods for suppression or eradication of the weevil. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. However, the effect of sterile weevils on the fitness of E. postfasciatus has not been evaluated on natural density. Here, we investigated the effect of gamma-irradiated weevil density on the number of weevil progeny. When irradiated weevils were released in numbers equal to those of non-irradiated weevils, the number of progeny was reduced by half of that in the control treatment, and it remained at this state for 2?weeks. Our results show that irradiated weevils ensure adequate and efficient suppression of wild weevils. We conclude that the SIT programs will be employed as effective eradication method for E. postfasciatus.  相似文献   

7.
Pupae of the Queensland fruit fly or Q‐fly Bactrocera tryoni (Froggatt) are irradiated routinely to induce reproductive sterility in adults for use in sterile insect technique programmes. Previous studies suggest that adult sexual performance and survival under nutritional and crowding stress are compromised by the current target dose of radiation for sterilization (70–75 Gy), and that improved mating propensity and survival under stress by irradiated males may be achieved by reducing the target sterilization dose without reducing the level of induced sterility. This raises the question of the amount by which the irradiation dose can be reduced before residual fertility becomes unacceptable. The present study measures the levels of residual fertility in male and female irradiated Q‐flies at different irradiation doses (20, 30, 40, 50, 60 and 70 Gy), and investigates the possibility that fecundity and fertility increase between 10–15 and 30–35 days post emergence. Male flies require a higher dose than females to induce sterility, with no residual fertility found in females irradiated at doses of 50 Gy or above, and no residual fertility found in males irradiated at doses of 60 Gy or above. Irradiated females are more fecund at 30–35 days post emergence than at 10–15 days. However, fertility does not increase between 10 and 15 days post emergence and 30–35 days, even at doses below 50 Gy. The present study shows that there is scope to reduce the target sterilization dose for Q‐flies below that of the current dose range (70–75 Gy) at the same time as retaining an adequate safety margin above radiation doses at which residual fertility can be expected.  相似文献   

8.
The effects of irradiation doses increasing from 0 to 100 Gy (1 Gy is energy absorbed in J kg(-1) of irradiated material) on fertility, flight ability, survival, and sterile male mating performance were evaluated for mass-reared Anastrepha obliqua (Macquart). High sterility values (> 98.2%) for irradiated males were obtained for doses as low as 25 Gy. Egg hatch was inhibited for irradiated males crossed with irradiated females at a low dose of 20 Gy. However, we estimated that to achieve 99.9% sterility (standard goal of many sterile insect technique programs), irradiation doses had to be increased to a dose between 50 and 75 Gy. At doses of 25 Gy and greater, we observed a decreasing trend in adult flight ability and an increasing trend in adult mortality. Such differences were greater for pupae irradiated at a young age compared those irradiated 24 h before emergence. Our single most relevant finding was that sterility induction (i.e., oviposition of nonfertilized eggs) was two times greater for males irradiated at low doses (40 Gy) than for males irradiated at high doses (80 Gy) when used at a 3:1:1 sterilized male to fertile male to fertile female ratio. Males irradiated at high doses may have been outcompeted by unirradiated males when courting unirradiated females. Implications of our findings for sterile insect technique programs are discussed.  相似文献   

9.
The sterile insect technique relies on sterilization of males using ionizing radiation. Life cycle stage, and the environmental conditions under which irradiation is carried out are crucial to the provision of good‐quality insects. To identify an optimal radiation strategy for Glossina pallidipes Austen, 1903, 13‐day‐old males were irradiated at different doses in a nitrogen atmosphere. The following day the males were mated with 8‐day‐old virgin females. Pupal production of mated females was monitored for 6 weeks, and induced sterility was determined by probit analysis. Survival of the males that mated was also monitored. At least 95% sterility of irradiated males was achieved with a 158 Gy dose in nitrogen and a 125 Gy in air. Irradiation significantly lowered the probability of survival between 30 and 100 days of age (especially flies irradiated in air), but probabilities of survival were similar outside this period for irradiated and unirradiated flies. Exposure of 2‐ or 13‐day‐old males to sterilizing radiation induced similar levels of sterility in both air and nitrogen.  相似文献   

10.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation is the effective manner to sterilize mass-reared insects. The negative impacts of this procedure are not limited to damage on reproductive cells. Gamma-radiation damages the epithelial tissue of midgut, which affects the alimentation in insects. Irradiated males alter their mating behavior over time because of the depression of metabolic activity by sterilization. In this study, we evaluated the male mating performance and sexually compatibility of irradiated male Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae) with a 200-Gy dose, as currently used in the SIT program in Okinawa Prefecture, throughout 16 d after irradiation in the laboratory. The mating ability of irradiated males did not differ from that of control males for about a week. However, the mating ability of irradiated male drastically decreased thereafter. We consider that irradiated male C. formicarius elegantulus with a 200-Gy dose had no major effect on male mating behavior approximately for a week after irradiation.  相似文献   

11.
A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.  相似文献   

12.
As part of the development of a sterile insect technique (SIT) application for the Ethiopian fruit fly, Dacus ciliatus, we studied the mating behaviour of a laboratory‐adapted strain (a 4‐year‐old colony kept for more than 40 generations) and a wild population. Effects of laboratory rearing and irradiation were assessed by carrying out mating compatibility and male mating competitiveness tests using a 1:1 ratio between irradiated (120 Gy) laboratory males and non‐irradiated wild males. Mating behaviour was studied on host and non‐host plants under field cage conditions. To assess the effect of mass rearing upon male performance, we repeated the mating competitiveness test using non‐irradiated laboratory insects. The findings indicated a high degree of compatibility among the two populations and satisfactory competitiveness of the irradiated laboratory males (ca. 35%). The competitiveness of non‐irradiated laboratory males was also ca. 35%, suggesting that no adverse effects resulted from their irradiation. Mating occurred only at twilight and mainly on the underside of leaves of non‐host plants (lemon trees). Findings are discussed in view of their implications for a future application of SIT against this fruit fly pest.  相似文献   

13.
Gamma radiation from isotopic sources has been used in sterile insect technique (SIT) programs worldwide, but it might be difficult to continue using these sources in future SIT programs because of social issues. Therefore, an alternative sterilization source to gamma rays, such as X-rays, needs to be developed. The physical properties of radiation are different between gamma rays and X-rays: for example, X-rays have a shorter penetration depth than gamma rays. Therefore, X-rays may not fully confer male sterility, depending on the target pest insects. The present study investigated whether the West-Indian sweetpotato weevil Euscepes postfasciatus (Fairmaire) and the sweetpotato weevil Cylas formicarius (Fabricius) are sterilized by X-rays generated in a low-energy X-ray irradiator, without deterioration of male mating ability, at the doses currently used in the eradication programs for E. postfasciatus (150 Gy) and C. formicarius (200 Gy) using gamma rays at Okinawa, Japan. The results demonstrated that it is possible to use X-rays in future SIT programs for E. postfasciatus and C. formicarius, because X-ray irradiated males were almost completely sterilized without deterioration of their mating ability.  相似文献   

14.
Irradiation has been widely used in suppression or eradication programs that use the sterile insect technique (SIT) or in studying sperm competition. Although it is well known that irradiation has negative impacts on reproductive (sperm) cells, previous studies have assumed that sperm from irradiated males behave identically to normal sperm in the female reproductive tract after mating. In this study, we used the West Indian sweetpotato weevil Euscepes postfasciatus to investigate the effect of irradiation on the abundance and viability of sperm in female spermatheca for 14 days after copulation. The abundance of sperm in females did not change throughout the experimental period, and sperm viability gradually decreased regardless of irradiation. In this weevil, irradiated sperm appear to behave identically to normal sperm in females for 14 days following irradiation/copulation. Therefore, the effect of irradiation on sperm viability within the female spermatheca is considered to be insignificant.  相似文献   

15.
Liriomyza trifolii is a serious pest of chrysanthemum greenhouses and other crops around the world. The larvae feed within the leaves of the host plants and create serpentine mines. The Sterile Insect Technique (SIT) has been successfully used against some Dipteran species in the field, and it is especially efficient against isolated populations like those on islands. Therefore, SIT against pest populations in confined environments such as greenhouses should have high potential for success. The objectives of this study were to determine the optimum gamma‐irradiation dosage required for the sterilisation of L. trifolii adults, and to determine the quality (emergence percentage, flight ability, longevity, copulatory success, and sperm transfer) of the irradiated males compared with that of non‐irradiated (normal) males. We found that sterility (< 0.7 mine per female) was achieved with the dose of 170 ± 5% Gy. The copulatory success and sperm transfer during copulation of the sterile males were not significantly different from those of normal males. Moreover, the longevity, emergence percentage and flight ability of irradiated males were also not significantly different from normal males. The SIT experiments suggest that the release of sterile L. trifolii can significantly reduce the reproductive capacity of a wild leafminer population. Our studies indicate that sterilisation of L. trifolii flies is feasible and that sterile males are of high quality and competitive with normal males. Based on these data, research on the use of SIT against L. trifolii populations in greenhouses is ongoing.  相似文献   

16.
The sterile insect technique (SIT) potentially provides a socially acceptable approach for insect eradication of new pest incursions. The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), was discovered in Berkeley (CA, USA) in 2006, leading to an incursion response that included this technology. In this study, we assessed factors affecting mating success from a bisex release of irradiated moths: effects of radiation dose on male multiple mating, male flight competition, female sex pheromone titre and attractiveness of irradiated females to males, and identification of successful mating in vineyards of either irradiated or wild males (identified by isotope analysis of spermatophores from sentinel females). There was a significant negative relationship between male radiation dose and mating frequency. In head‐to‐head flights of irradiated males against non‐irradiated males to a pheromone lure in a wind tunnel, irradiated males reached the lure first only 31% of the time. With increasing radiation dose, the production of the major sex pheromone component in females, (E)‐11‐tetradecenyl acetate, dropped, from 0.7 ± 0.1 ng per female in non‐irradiated females to 0.2 ± 0.07 ng per female when irradiated at 300 Gy. Male catch was reduced to 11% of control females in traps containing females irradiated at 300 Gy. Isotope analysis of spermatophores found in the bursa copulatrix of females indicated that mating success of irradiated males inside the live (entry‐only) traps containing virgin females was lower (13.1 ± 3.3%) than suggested by male catch (21.2 ± 3.8%) in pheromone traps, the current standard for assessing field competitiveness. Impacts of irradiation on male and female moth fitness should be taken into account to improve estimates of irradiated to wild male E. postvittana overflooding ratios needed for population suppression.  相似文献   

17.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

18.
Adult Epiphyas postvittana Walker were irradiated using a Cobalt 60 source to determine the dose needed to achieve complete egg sterility of mated female moths, and egg sterility of female moths mated to F1 generation males. Adult male and female E. postvittana were irradiated at 100, 200, 250, and 300 Gy and their fertility (when crossed with normal moths) was compared with nonirradiated moths. Viable progeny (determined by egg hatch) were found at doses of 100 and 200 Gy, but very little at 250 and 300 Gy. In particular, there was no survival of female progeny into the F1 generation. Males irradiated at 250 and 300 Gy had very low egg eclosion rates (2.25 and 1.86% at 250 and 300 Gy, respectively) when mated with normal females. The F2 generation from those male progeny had a mean percent hatched of < 1.02%. Based on our results, a dose of 250-300 Gy is recommended for irradiation of E. postvittana adults used for sterile insect technique (SIT) if sterility of parental moths is the desired outcome. Our data also suggests that inclusion of F1 hybrid sterility rather than parental generation sterility into programs using the SIT may allow for doses lower than what we have reported, especially during initial phases of an eradication program where increase fitness of moths might be desirable. Further research is needed to verify the use of F1 hybrid sterility in light brown apple moth SIT programs.  相似文献   

19.
The influence of gamma radiation on the mating behaviour of the red date palm weevil (RDPW), Rhynchophorus ferrugineus (Olivier), and the efficacy of sterile insect technique (SIT) under different levels of relative humidity (RH) were studied. No adverse effects of gamma radiation were observed on the mating behaviour parameters of the RDPW, such as mate recognition time, mating duration, mating frequency within a 30‐min period and duration between consecutive matings. However, the weevils were sexually stimulated during aggregation. RH significantly affected egg laying as well as egg hatching. Significantly lower egg laying and hatching were recorded at 25% RH than at higher humidity levels, suggesting that low humidity conditions are better for successful SIT manipulations in the field. Lifespan of irradiated RDPW males was significantly shorter than that of un‐irradiated controls, irrespective of RH level.  相似文献   

20.
Female remating is a widespread behaviour, reported in several insect species. This behaviour can affect the efficiency of sterile insect technique (SIT); however, little is known about the postcopulatory behaviour of some pest species considered as candidates to be controlled by this technique, such as Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). In this study, we investigated the effects of male and female sterilization on mating and remating behaviour of D. suzukii. First, we tested the occurrence of multiple mating in different combinations between sterile and fertile males and females. Then, we tested the effects of male and female sterility on female propensity to mate and remate. We found an overall low remating rate by D. suzukii females. Male sterility did not influence mating and remating likelihood; however, copula duration of sterile males was shorter compared to fertile males. On the other hand, sterile females were less likely to mate. Our findings encourage further research regarding the use of SIT to control D. suzukii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号