首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IκB kinase (IKK) complex is a key regulator of signal transduction pathways leading to the induction of NF-κB-dependent gene expression and production of pro-inflammatory cytokines. It therefore represents a major target for the development of anti-inflammatory therapeutic drugs and may be targeted by pathogens seeking to diminish the host response to infection. Previously, the vaccinia virus (VACV) strain Western Reserve B14 protein was characterised as an intracellular virulence factor that alters the inflammatory response to infection by an unknown mechanism. Here we demonstrate that ectopic expression of B14 inhibited NF-κB activation in response to TNFα, IL-1β, poly(I:C), and PMA. In cells infected with VACV lacking gene B14R (vΔB14) there was a higher level of phosphorylated IκBα but a similar level of IκBα compared to cells infected with control viruses expressing B14, suggesting B14 affects IKK activity. Direct evidence for this was obtained by showing that B14 co-purified and co-precipitated with the endogenous IKK complex from human and mouse cells and inhibited IKK complex enzymatic activity. Notably, the interaction between B14 and the IKK complex required IKKβ but not IKKα, suggesting the interaction occurs via IKKβ. B14 inhibited NF-κB activation induced by overexpression of IKKα, IKKβ, and a constitutively active mutant of IKKα, S176/180E, but did not inhibit a comparable mutant of IKKβ, S177/181E. This suggested that phosphorylation of these serine residues in the activation loop of IKKβ is targeted by B14, and this was confirmed using Ab specific for phospho-IKKβ.  相似文献   

2.
3.
4.
B-cell CLL/lymphoma 10 (BCL10), the caspase recruitment domain (CARD)-containing protein involved in the etiology of the mucosa-associated lymphoid tissue (MALT) lymphomas, has been implicated in inflammatory processes in epithelial cells, as well as in immune cells. Experiments in this report indicate that BCL10 is required for activation of nuclear factor (NF)-κB by both canonical and noncanonical pathways, following stimulation by the sulfated polysaccharide carrageenan (CGN). In wild type and IκB-kinase (IKK)α−/− mouse embryonic fibroblasts, increases in phospho-IκBα, nuclear NF-κB p65 (RelA) and p50, and KC, the mouse analog of human interleukin-8, were markedly reduced by silencing BCL10 or by exposure to the free radical scavenger Tempol. In IKKβ−/− cells, BCL10 silencing, but not Tempol, reduced the CGN-induced increases in KC, phospho-NF-κB-inducing kinase (NIK), cytoplasmic NF-κB p100, and nuclear NF-κB p52 and RelB, suggesting a BCL10 requirement for activation of the noncanonical pathway. In NCM460 cells, derived from normal, human colonic epithelium, the CGN-induced increases in NF-κB family members, p65, p50, p52, and RelB, were inhibited by BCL10 silencing. Although enzyme-linked immunosorbent assay and confocal images demonstrated no change in total NIK following CGN, increases in phospho-NIK in the wild type, IKKβ−/− and IKKα−/− cells were inhibited by silencing BCL10. These findings indicate an upstream signaling role for BCL10, in addition to its effects on IKKγ, the regulatory component of the IKK signalosome, and a requirement for BCL10 in both canonical and noncanonical pathways of NF-κB activation. Also, the commonly used food additive carrageenan can be added to the short list of known activators of both pathways.  相似文献   

5.
6.
7.
Chi F  Bo T  Wu CH  Jong A  Huang SH 《PloS one》2012,7(4):e35862

Background

IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.

Methodology/Principal Findings

IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.

Conclusion/Significance

These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.  相似文献   

8.
9.
MEKK3 serves as a critical intermediate signaling molecule in lysophosphatidic acid-mediated nuclear factor-κB (NF-κB) activation. However, the precise regulation for MEKK3 activation at the molecular level is still not fully understood. Here we report the identification of two regulatory phosphorylation sites at Thr-516 and Ser-520 within the kinase activation loop that is essential for MEKK3-mediated IκB kinase β (IKKβ)/NF-κB activation. Substitution of these two residues with alanine abolished the ability of MEKK3 to activate IKKβ/NF-κB, whereas replacement with acidic residues rendered MEKK3 constitutively active. Furthermore, substitution of these two residues with alanine abolished the ability of MEKK3 to mediate lysophosphatidic acid-induced optimal IKKβ/NF-κB activation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Ubiquitination and deubiquitination of receptor-interacting protein 1 (RIP1) play an important role in the positive and negative regulation of the tumor necrosis factor α (TNFα)-induced nuclear factor κB (NF-κB) activation. Using a combination of functional genomic and proteomic approaches, we have identified ubiquitin-specific peptidase 21 (USP21) as a deubiquitinase for RIP1. USP21 is constitutively associated with RIP1 and deubiquitinates RIP1 in vitro and in vivo. Notably, knockdown of USP21 in HeLa cells enhances TNFα-induced RIP1 ubiquitination, IκB kinase β (IKKβ), and NF-κB phosphorylation, inhibitor of NF-κB α (IκBα) phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Therefore, our results demonstrate that USP21 plays an important role in the down-regulation of TNFα-induced NF-κB activation through deubiquitinating RIP1.  相似文献   

17.
18.
CC2D1A is an evolutionarily conserved protein that contains four DM14 domains at the N terminus and a C2 domain at the C terminus. Loss-of-function mutations in CC2D1A have been linked to mental retardation in human, but the biochemical function of this protein is largely unknown. Here, we show that CC2D1A is a potent activator of NF-κB. The activation of NF-κB by CC2D1A requires its C2 domain. CC2D1A activates NF-κB in a manner that depends on the ubiquitin-conjugating enzyme Ubc13, TNF receptor-associated factor TRAF2, the protein kinase TAK1, and the IκB kinase (IKK) complex. In addition, the deubiquitination enzyme Cylindromatosis (CYLD) negatively regulates the activity of CC2D1A. These results suggest that CC2D1A activates NF-κB through the canonical IKK pathway.  相似文献   

19.
20.
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the “NEMO-binding domain” at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain–Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture–based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号