首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

2.
Next‐generation sequencing technologies permit rapid and cost‐effective identification of numerous putative microsatellite loci. Here, from the genome sequences of Japanese quail, we developed microsatellite markers containing dinucleotide repeats and employed these for characterisation of genetic diversity and population structure. A total of 385 individuals from 12 experimental and one wild‐derived Japanese quail lines were genotyped with newly developed autosomal markers. The maximum number of alleles, expected heterozygosity and polymorphic information content (PIC) per locus were 10, 0.80 and 0.77 respectively. Approximately half of the markers were highly informative (PIC ≥ 0.50). The mean number of alleles per locus and observed heterozygosity within a line were in the range of 1.3–4.1 and 0.11–0.53 respectively. Compared with the wild‐derived line, genetic diversity levels were low in the experimental lines. Genetic differentiation (FST) between all pairs of the lines ranged from 0.13 to 0.83. Genetic clustering analyses based on multilocus genotypes of individuals showed that most individuals formed clearly defined clusters corresponding to the origins of the lines. These results suggest that Japanese quail experimental lines are highly structured. Microsatellite markers developed in this study may be effective for future genetic studies of Japanese quail.  相似文献   

3.
The hunt for the genes underlying ecological speciation has now closed in on a number of candidates, but making the link from genotype to phenotype continues to pose a significant challenge. This is partly because genetic studies in many systems remain impeded by long generation times or an inability to perform controlled crosses. Now, in this issue of Molecular Ecology, Malek et al. (2012) demonstrate the utility of a novel admixture mapping approach that can be used to identify genomic regions contributing to adaptive trait divergence between natural populations. Remarkably, they validate their approach by mapping traits associated with mate choice in a wild limnetic and benthic threespine stickleback (Gasterosteus aculeatus) species pair, finding several loci associated with male nuptial coloration and shape. While this study benefited from tried‐and‐true microsatellites in a well‐characterized species with a detailed genetic map (and genome sequence), the field is quickly moving towards the use of next‐generation sequencing, especially for nonmodel systems. The ability to characterize molecular polymorphisms for any system suggests that molecular ecologists working on virtually any species may benefit from applying Malek et al.'s approach, if naturally admixed populations are available.  相似文献   

4.
Substantial intraspecific variation in life history is rare and potentially a signal of incipient ecological speciation, if variation is driven by geographically heterogenous natural selection. We present the first report of extensive life history polymorphism in Helianthus argophyllus, the silverleaf sunflower, and examine evidence for its evolution by divergent selection. In 18 populations sampled from across the species range and grown in a common garden, most quantitative traits covaried such that individuals could be assigned to two distinct life history syndromes: tall and late flowering with small initial flowerheads, or short and early flowering with larger initial flowerheads. Helianthus argophyllus exhibits regional genetic structure, but this population structure does not closely correspond with patterns of phenotypic variation. The early‐flowering syndrome is primarily observed in populations from coastal barrier islands, while populations from the nearby mainland coast, although geographically and genetically close, are primarily late flowering. Additionally, several traits are more differentiated among regions than expected based on neutral genetic divergence (QST > FST), including the first principal component score corresponding with life history syndrome. This discordance between patterns of phenotypic and genetic variation suggests that divergent selection is driving genetic differences in life history across the species range. If so, the silverleaf sunflower may be in early stages of ecological speciation.  相似文献   

5.
Almost 90% of global bird extinctions have occurred on islands. The loss of endemic species from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th century, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced colonization by highly invasive parrots, such as the Ring‐necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in species composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmental and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Seychelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non‐endemic invasive forms such as the Ring‐necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appropriate ecological replacements for the extinct parrots. Such replacements may be introduced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity.  相似文献   

6.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

7.
Life‐history theory suggests species that typically have a large number of offspring and high adult mortality may make decisions that benefit offspring survival in exchange for increased adult risks. Such behavioral adaptations are essential to understanding how demographic performance is linked to habitat selection during this important life‐history stage. Though studies have illustrated negative fitness consequences to attendant adults or potential fitness benefits to associated offspring because of adaptive habitat selection during brood rearing, equivocal relationships could arise if both aspects of this reproductive trade‐off are not assessed simultaneously. To better understand how adaptive habitat selection during brood rearing influences demographics, we studied the brood survival, attendant parental survival, and space use of two sympatric ground‐nesting bird species, the northern bobwhite (hereafter: “bobwhite”; Colinus virgininanus) and scaled quail (Callipepla squamata). During the 2013–2014 breeding seasons, we estimated habitat suitability across two grains (2 m and 30 m) for both species and determined how adult space use of these areas influenced individual chick survival and parental risk. We found the proportion of a brood's home range containing highly suitable areas significantly increased bobwhite chick survival (β = 0.02, SE = 0.006). Additionally, adult weekly survival for bobwhite was greater for individuals not actively brooding offspring (0.9716, SE = 0.0054) as compared to brooding adults (0.8928, SE = 0.0006). Conversely, brood habitat suitability did not influence scaled quail chick survival during our study, nor did we detect a survival cost for adults that were actively brooding offspring. Our research illustrates the importance of understanding life‐history strategies and how they might influence relationships between adaptive habitat selection and demographic parameters.  相似文献   

8.
While it is generally assumed that specialist species are more vulnerable to disturbance compared with generalist counterparts, this has rarely been tested in coastal marine ecosystems, which are increasingly subject to a wide range of natural and anthropogenic disturbances. Habitat specialists are expected to be more vulnerable to habitat loss because habitat availability exerts a greater limitation on population size, but it is also possible that specialist species may escape effects of disturbance if they use habitats that are generally resilient to disturbance. This study quantified specificity in use of different coral species by six coral‐dwelling damselfishes (Chromis viridis, C. atripectoralis, Dascyllus aruanus, D. reticulatus, Pomacentrus moluccensis, and P. amboinensis) and related habitat specialization to proportional declines in their abundance following habitat degradation caused by outbreaks of the coral eating starfish, Acanthaster planci. The coral species preferred by most coral‐dwelling damselfishes (e.g., Pocillopora damicornis) were frequently consumed by coral eating crown‐of‐thorns starfish, such that highly specialized damselfishes were disproportionately affected by coral depletion, despite using a narrower range of different coral species. Vulnerability of damselfishes to this disturbance was strongly correlated with both their reliance on corals and their degree of habitat specialization. Ongoing disturbances to coral reef ecosystems are expected, therefore, to lead to fundamental shifts in the community structure of fish communities where generalists are favored over highly specialist species.  相似文献   

9.
Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: ?6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: ?47.9%, ?41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.  相似文献   

10.
Coucals are large, predatory, primarily ground‐dwelling cuckoos of the genus Centropus, with 26 extant species ranging from Africa to Australia. Their evolutionary and biogeographical history are poorly understood and their fossil record almost non‐existent. Only one species (Centropus phasianinus) currently inhabits Australia, but there is now fossil evidence for at least three Pleistocene species. One of these (Centropus colossus) was described from south‐eastern Australia in 1985. Here we describe additional elements of this species from the same site, and remains of two further extinct species from the Thylacoleo Caves of the Nullarbor Plain, south‐central Australia. The skeletal morphology and large size of the three extinct species indicates that they had reduced capacity for flight and were probably primarily ground‐dwelling. The extinct species include the two largest‐known cuckoos, weighing upwards of 1 kg each. They demonstrate that gigantism in this lineage has been more marked in a continental context than on islands, contrary to the impression gained from extant species. The evolutionary relationships of the Australian fossil coucals are uncertain, but our phylogenetic analysis indicates a possible close relationship between one of the Nullarbor species and extant Centropus violaceus from the Bismarck Archipelago. The presence of three coucals in southern Australia markedly extends the geographical range of the genus from tropical Australia into southern temperate regions. This demonstrates the remarkable and consistent ability of coucals to colonize continents despite their very limited flying ability.  相似文献   

11.
Understory species play a significant role in forest ecosystem dynamics. As such, species of the Ericaceae family have a major effect on the regeneration of tree species in boreal ecosystems. It is thus imperative to understand the ecological gradients controlling their distribution and abundance, so that their impacts can be taken into account in sustainable forest management. Using innovative analytical techniques from landscape ecology, we aimed to position, along ecological gradients, four Ericaceae found in the boreal forest of Quebec (Canada) (Rhododendron groenlandicum, Kalmia angustifolia, Chamaedaphne calyculata, and Vaccinium spp), to regionalize these species into landscape units relevant to forest management, and to estimate the relative importance of several ecological drivers (climate, disturbances, stand attributes, and physical environment) that control the species distribution and abundance. We conducted our study in boreal Quebec, over a study area covering 535,355 km2. We used data from 15,339 ecological survey plots and forest maps to characterize 1422 ecological districts covering the study region. We evaluated the relative proportion of each ericaceous species and explanatory variables at the district level. Vegetation and explanatory variables matrices were used to conduct redundancy, cluster, and variation partitioning analyses. We observed that ericaceous species are mainly distributed in the western part of the study area and each species has a distinct latitudinal and longitudinal gradient distribution. On the basis of these gradients, we delimited 10 homogeneous landscape units distinct in terms of ericaceous species abundance and environmental drivers. The distribution of the ericaceous species along ecological gradients is closely related to the overlaps between the four sets of explanatory variables considered. We conclude that the studied Ericaceae occupy specific positions along ecological gradients and possess a specific abundance and distribution controlled by the integration of multiple explanatory variables.  相似文献   

12.
The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to insecticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered insect‐resistant crops could mitigate many of the negative side effects of insecticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro‐ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here, we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if nonsusceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible long‐term ecological trophic interactions of employing this technology.  相似文献   

13.
Replicate radiations, the repeated multiplication of species associated with ecological divergence, have attracted much attention and generated as much debate. Due to the few well‐studied cases, it remains unclear whether replicate radiations are an exceptional result of evolution or a relatively common example of the power of adaptation by natural selection. We examined the case of Eleutherodactylus frogs, which radiated in the Caribbean islands resulting in more than 160 species that occupy very diverse habitats. A time‐calibrated phylogeny revealed that these frogs independently diversified on all larger islands producing species that occupy a broad range of microhabitats in different islands. Using phylogenetic comparative methods, we found an association between morphological traits and particular microhabitats, and for most microhabitats detected significant morphological convergence. Our results indicate Caribbean Eleutherodactylus are a novel example of replicate radiations, and highlight the predictability of evolutionary processes, as similar ecological opportunities can lead to similar outcomes.  相似文献   

14.
Many species are shifting their ranges in response to the changing climate. In cases where such shifts lead to the colonization of a new ecosystem, it is critical to establish how the shifting species itself is impacted by novel environmental and biological interactions. Anthropogenic habitats that are analogous to the historic habitat of a shifting species may play a crucial role in the ability of that species to expand or persist in suboptimal colonized ecosystems. We tested if the anthropogenic habitat of docks, a likely mangrove analog, provides improved conditions for the range‐shifting mangrove tree crab Aratus pisonii within the colonized suboptimal salt marsh ecosystem. To test if docks provided an improved habitat, we compared the impact of the salt marsh and dock habitats on ecological and life history traits that influence the ability of this species to persist and expand into the salt marsh and compared these back to baselines in the historic mangrove ecosystem. Specifically, we examined behavior, physiology, foraging, and the thermal conditions of A. pisonii in each habitat. We found that docks provide a more favorable thermal and foraging habitat than the surrounding salt marsh, while their ability to provide conditions which improved behavior and physiology was mixed. Our study shows that anthropogenic habitats can act as analogs to historic ecosystems and enhance the habitat quality for range‐shifting species in colonized suboptimal ecosystems. If the patterns that we document are general across systems, then anthropogenic habitats may play an important facilitative role in the range shifts of species with continued climate change.  相似文献   

15.
Molecular phylogenetic analyses conducted over the past 15 yr have consistently had difficulties resolving relationships among the cetacean species in the subfamily Delphininae. In addition, paraphyly of the genera Tursiops and Stenella in these molecular phylogenies has been a recurrent problem since the first appearance of such a phylogeny in 1999, suggesting that these genera do not accurately reflect the evolutionary relationships of the species they contain. Morphological analyses have not resolved the issues. The genera in Delphininae originated in the 19th Century on questionable morphological grounds. The species were nearly all originally described in the genus Delphinus of Linnaeus. Recent molecular phylogenies based on various mitochondrial and nuclear DNA markers have suggested a wide range of possible relationships among these taxa, and several authors have suggested synonymizing all the taxa (Lagenodelphis, Stenella, Sousa, and Tursiops) under Delphinus. Until molecular and/or morphological analyses adequately sort out relationships in this very recently radiated group, one possible solution indeed would be to merge all the delphinine genera with Delphinus. Implications of such a move and alternatives are discussed.
Editor's Note: Papers from past Norris Award winners have primarily been a revised or reduced version of the actual presentation given as a plenary talk at the biennial conference. Dr. Perrin requested being allowed to take a topic from his presentation and expand on it to present a set of ideas in the form of an essay that could pass the rigors of the peer‐review process. As a result, this Norris Award paper has undergone peer‐review and has taken longer than usual for a Norris Award paper to appear in the journal following its presentation at the biennial conference. It also has co‐authors, with varying opinions on the issues discussed in the essay, to cover appropriately and more thoroughly those components of the paper that required additional expertise. I believe this approach has produced an excellent, thought‐provoking essay and is an approach that should be available to future Norris Award winners if they so choose to take it. Since this essay is meant to elicit dialogue, comments are welcome and will be considered for publication in Letters to the Editor.
  相似文献   

16.
Reconstructing ecological niche shifts during ontogeny in extinct animals with no living analogues is difficult without exceptional fossil collections. Here we demonstrate how a previously identified ontogenetic shift in the size and shape of the dentition in the early Toarcian ichthyosaur Stenopterygius quadriscissus accurately predicts a particular dietary shift. The smallest S. quadriscissus fed on small, burst‐swimming fishes, with a steady shift towards faster moving fish and cephalopods with increasing body size. Larger adult specimens appear to have been completely reliant on cephalopods, with fish completely absent from gut contents shortly after onset of sexual maturity. This is consistent with a previously proposed ontogenetic niche shift based on tooth shape and body size, corroborating the idea that dental ontogeny may be a useful predictor of dietary shifts in marine reptiles. Applying the theoretical framework used here to other extinct species will improve the resolution of palaeoecological reconstructions, where appropriate sample sizes exist.  相似文献   

17.
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnHpsbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.  相似文献   

18.
Interspecific competition among carnivores has been linked to differences in behavior, morphology, and resource use. Insights into these interactions can enhance understanding of local ecological processes that can have impacts on the recovery of endangered species, such as the ocelot (Leopardus pardalis). Ocelots, bobcats (Lynx rufus), and coyotes (Canis latrans) share a small geographic range overlap from South Texas to south‐central Mexico but relationships among the three are poorly understood. From May 2011 to March 2018, we conducted a camera trap study to examine co‐occurrence patterns among ocelots, bobcats, and coyotes on the East Foundation's El Sauz Ranch in South Texas. We used a novel multiseason extension to multispecies occupancy models with ≥2 interacting species to conduct an exploratory analysis to examine interspecific interactions and examine the potential effects of patch‐level and landscape‐level metrics relative to the occurrence of these carnivores. We found strong evidence of seasonal mutual coexistence among all three species and observed a species‐specific seasonal trend in detection. Seasonal coexistence patterns were also explained by increasing distance from a high‐speed roadway. However, these results have important ecological implications for planning ocelot recovery in the rangelands of South Texas. This study suggests a coexistence among ocelots, bobcats, and coyotes under the environmental conditions on the El Sauz Ranch. Further research would provide a better understanding of the ecological mechanisms that facilitate coexistence within this community. As road networks in the region expand over the next few decades, large private working ranches will be needed to provide important habitat for ocelots and other carnivore species.  相似文献   

19.
Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co‐occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter‐ and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co‐occur in branching corals. Species‐level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.  相似文献   

20.
Bees fulfil a critical ecological role as pollinators, significantly contributing to the reproductive success of myriad angiosperm species. Although increasingly appreciated for their agricultural contributions, relatively little is yet known about the natural history of the vast majority of the more than 20 000 wild bee species worldwide. The small carpenter bee genus Ceratina occurs globally, and is represented in North America by its most recently diverged subgenera, Ceratinula and Zadontomerus. Recent genetic analysis of eastern Ceratina (Zadontomerus) supports the existence of five closely related, yet genetically distinct species living in sympatry. This phylogeographical study employs molecular barcoding of the most comprehensive specimen collection yet assembled to confirm the identities of these recently diverged eastern North American Ceratina (Zadontomerus) species. Delineation of extant population structure, evolutionary history and known range of this emerging model native pollinator are greatly improved by this study. We consider ecological and behavioural factors potentially contributing to the maintenance of genetic identity among these sympatric species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号