首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Genomic deletions and duplications are important in the pathogenesis of diseases, such as cancer and mental retardation, and have recently been shown to occur frequently in unaffected individuals as polymorphisms. Affymetrix GeneChip whole genome sampling analysis (WGSA) combined with 100 K single nucleotide polymorphism (SNP) genotyping arrays is one of several microarray-based approaches that are now being used to detect such structural genomic changes. The popularity of this technology and its associated open source data format have resulted in the development of an increasing number of software packages for the analysis of copy number changes using these SNP arrays.

Results

We evaluated four publicly available software packages for high throughput copy number analysis using synthetic and empirical 100 K SNP array data sets, the latter obtained from 107 mental retardation (MR) patients and their unaffected parents and siblings. We evaluated the software with regards to overall suitability for high-throughput 100 K SNP array data analysis, as well as effectiveness of normalization, scaling with various reference sets and feature extraction, as well as true and false positive rates of genomic copy number variant (CNV) detection.

Conclusion

We observed considerable variation among the numbers and types of candidate CNVs detected by different analysis approaches, and found that multiple programs were needed to find all real aberrations in our test set. The frequency of false positive deletions was substantial, but could be greatly reduced by using the SNP genotype information to confirm loss of heterozygosity.  相似文献   

2.
Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision.  相似文献   

3.
Copy number variations (CNVs) are being used as genetic markers or functional candidates in gene-mapping studies. However, unlike single nucleotide polymorphism or microsatellite genotyping techniques, most CNV detection methods are limited to detecting total copy numbers, rather than copy number in each of the two homologous chromosomes. To address this issue, we developed a statistical framework for intensity-based CNV detection platforms using family data. Our algorithm identifies CNVs for a family simultaneously, thus avoiding the generation of calls with Mendelian inconsistency while maintaining the ability to detect de novo CNVs. Applications to simulated data and real data indicate that our method significantly improves both call rates and accuracy of boundary inference, compared to existing approaches. We further illustrate the use of Mendelian inheritance to infer SNP allele compositions in each of the two homologous chromosomes in CNV regions using real data. Finally, we applied our method to a set of families genotyped using both the Illumina HumanHap550 and Affymetrix genome-wide 5.0 arrays to demonstrate its performance on both inherited and de novo CNVs. In conclusion, our method produces accurate CNV calls, gives probabilistic estimates of CNV transmission and builds a solid foundation for the development of linkage and association tests utilizing CNVs.  相似文献   

4.
We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole‐genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty‐nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole‐genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.  相似文献   

5.
We used the data from a recently performed genome‐wide association study using the Illumina Equine SNP50 beadchip for the detection of copy number variants (CNVs) and examined their association with recurrent laryngeal neuropathy (RLN), an important equine upper airway disease compromising performance. A total of 2797 CNVs were detected for 477 horses, covering 229 kb and seven SNPs on average. Overlapping CNVs were merged to define 478 CNV regions (CNVRs). CNVRs, particularly deletions, were shown to be significantly depleted in genes. Fifty‐two of the 67 common CNVRs (frequency ≥ 1%) were validated by association mapping, Mendelian inheritance, and/or Mendelian inconsistencies. None of the 67 common CNVRs were significantly associated with RLN when accounting for multiple testing. However, a duplication on chromosome 10 was detected in 10 cases (representing three breeds) and two unphenotyped parents but in none of the controls. The duplication was embedded in an 8‐Mb haplotype shared across breeds.  相似文献   

6.
SUMMARY: The program package CopyMap identifies copy number variation from oligo-hybridization and CGH data. Using a time-dependent hidden Markov model to combine evidence of copy number variants (CNVs) across multiple carriers, CopyMap is substantially more accurate than standard hidden Markov methods in identifying CNVs and calling CNV-carriers. Moreover, CopyMap provides more precise estimates of CNV-boundaries. AVAILABILITY: The C-source code and detailed documentation for the program CopyMap is available on the Internet at http://www.sph.umich.edu/csg/szoellner/  相似文献   

7.
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.  相似文献   

8.
The aim of our study was to assess the associations of HSP90AB1 copy number variations (CNVs) with systemic lupus erythematosus (SLE) risk and glucocorticoids (GCs) efficacy, as well as the relationship between HSP90AB1 single‐nucleotide polymorphisms (SNPs) and GCs efficacy. HSP90AB1 CNVs and SLE risk were analysed in 519 patients and 538 controls. Patients treated with GCs were followed up for 12 weeks and were divided into sensitive and insensitive groups to investigate the effects of CNVs (419 patients) and SNPs (457 patients) on the efficacy of GCs. Health‐related quality of life (HRQoL) was also measured by SF‐36 at baseline and week 12 to explore the relationship between CNVs/SNPs and HRQoL improvements in Chinese SLE patients. Our results indicated a statistically significant association between HSP90AB1 CNVs and SLE (PBH = 0.039), and this association was more pronounced in the female subgroup (PBH = 0.039). However, we did not detect association of HSP90AB1 CNVs/SNPs with efficacy of GCs. But we found a marginal association between SNP rs13296 and improvement in Role‐emotional, while this association was not strong enough to survive in the multiple testing corrections. Collectively, our findings suggest that the copy number of HSP90AB1 is associated with SLE susceptibility. But copy number and polymorphisms of HSP90AB1 may not be associated with efficacy of GCs.  相似文献   

9.
Age-related macular degeneration (AMD) is a complex genetic disease, with many loci demonstrating appreciable attributable disease risk. Despite significant progress toward understanding the genetic and environmental etiology of AMD, identification of additional risk factors is necessary to fully appreciate and treat AMD pathology. In this study, we investigated copy number variants (CNVs) as potential AMD risk variants in a cohort of 400 AMD patients and 500 AMD-free controls ascertained at the University of Iowa. We used three publicly available copy number programs to analyze signal intensity data from Affymetrix GeneChip SNP Microarrays. CNVs were ranked based on prevalence in the disease cohort and absence from the control group; high interest CNVs were subsequently confirmed by qPCR. While we did not observe a single-locus "risk CNV" that could account for a major fraction of AMD, we identified several rare and overlapping CNVs containing or flanking compelling candidate genes such as NPHP1 and EFEMP1. These and other candidate genes highlighted by this study deserve further scrutiny as sources of genetic risk for AMD.  相似文献   

10.
Detailed analyses of the population-genetic nature of copy number variations (CNVs) and the linkage disequilibrium between CNV and single nucleotide polymorphism (SNP) loci from high-throughput experimental data require a computational tool to accurately infer alleles of CNVs and haplotypes composed of both CNV alleles and SNP alleles. Here we developed a new tool to infer population frequencies of such alleles and haplotypes from observed copy numbers and SNP genotypes, using the expectation-maximization algorithm. This tool can also handle copy numbers ambiguously determined, such as 2 or 3 copies, due to experimental noise. AVAILABILITY: http://emu.src.riken.jp/MOCSphaser/MOCSphaser.zip.  相似文献   

11.
Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, 'cn.FARMS', which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html.  相似文献   

12.

Background

The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty.

Methodology and Principal Findings

In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability.

Conclusions and Significance

Interpretation of CNV association findings must take into account the effects of filtering and combining CNV calls when based on early genome-wide genotyping platforms and modest study sizes.  相似文献   

13.
Array-based technologies have been used to detect chromosomal copy number changes (aneuploidies) in the human genome. Recent studies identified numerous copy number variants (CNV) and some are common polymorphisms that may contribute to disease susceptibility. We developed, and experimentally validated, a novel computational framework (QuantiSNP) for detecting regions of copy number variation from BeadArray SNP genotyping data using an Objective Bayes Hidden-Markov Model (OB-HMM). Objective Bayes measures are used to set certain hyperparameters in the priors using a novel re-sampling framework to calibrate the model to a fixed Type I (false positive) error rate. Other parameters are set via maximum marginal likelihood to prior training data of known structure. QuantiSNP provides probabilistic quantification of state classifications and significantly improves the accuracy of segmental aneuploidy identification and mapping, relative to existing analytical tools (Beadstudio, Illumina), as demonstrated by validation of breakpoint boundaries. QuantiSNP identified both novel and validated CNVs. QuantiSNP was developed using BeadArray SNP data but it can be adapted to other platforms and we believe that the OB-HMM framework has widespread applicability in genomic research. In conclusion, QuantiSNP is a novel algorithm for high-resolution CNV/aneuploidy detection with application to clinical genetics, cancer and disease association studies.  相似文献   

14.
We propose a statistical framework, named genoCN, to simultaneously dissect copy number states and genotypes using high-density SNP (single nucleotide polymorphism) arrays. There are at least two types of genomic DNA copy number differences: copy number variations (CNVs) and copy number aberrations (CNAs). While CNVs are naturally occurring and inheritable, CNAs are acquired somatic alterations most often observed in tumor tissues only. CNVs tend to be short and more sparsely located in the genome compared with CNAs. GenoCN consists of two components, genoCNV and genoCNA, designed for CNV and CNA studies, respectively. In contrast to most existing methods, genoCN is more flexible in that the model parameters are estimated from the data instead of being decided a priori. GenoCNA also incorporates two important strategies for CNA studies. First, the effects of tissue contamination are explicitly modeled. Second, if SNP arrays are performed for both tumor and normal tissues of one individual, the genotype calls from normal tissue are used to study CNAs in tumor tissue. We evaluated genoCN by applications to 162 HapMap individuals and a brain tumor (glioblastoma) dataset and showed that our method can successfully identify both types of copy number differences and produce high-quality genotype calls.  相似文献   

15.

Background  

Copy number variations (CNVs) and polymorphisms (CNPs) have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data.  相似文献   

16.
MOTIVATION: Estimating the frequency distribution of copy number variants (CNVs) is an important aspect of the effort to characterize this new type of genetic variation. Currently, most studies report a strong skew toward low-frequency CNVs. In this article, our goal is to investigate the frequencies of CNVs. We employ a two-step procedure for the CNV frequency estimation process. We use family information a posteriori to select only the most reliable CNV regions, i.e. those showing high rates of Mendelian transmission. RESULTS: Our results suggest that the current skew toward low-frequency CNVs may not be representative of the true frequency distribution, but may be due, among other reasons, to the non-negligible false negative rates that characterize CNV detection methods. Moreover, false positives are also likely, as low-frequency CNVs are hard to detect with small sample sizes and technologies that are not ideally suited for their detection. Without appropriate validation methods, such as incorporation of biologically relevant information (for example, in our case, the transmission of heritable CNVs from parents to offspring), it is difficult to assess the validity of specific CNVs, and even harder to obtain reliable frequency estimates.  相似文献   

17.
Copy number variation refers to regions along chromosomes that harbor a type of structural variation, such as duplications or deletions. Copy number variants (CNVs) play a role in many important traits as well as in genetic diversity. Previous analyses of chickens using array comparative genomic hybridizations or single‐nucleotide polymorphism chip assays have been performed on various breeds and genetic lines to discover CNVs. In this study, we assessed individuals from two highly inbred (inbreeding coefficiency > 99.99%) lines, Leghorn G‐B2 and Fayoumi M15.2, to discover novel CNVs in chickens. These lines have been previously studied for disease resistance, and to our knowledge, this represents the first global assessment of CNVs in the Fayoumi breed. Genomic DNA from individuals was examined using the Agilent chicken 244 K comparative genomic hybridization array and quantitative PCR. We identified a total of 273 CNVs overall, with 112 CNVs being novel and not previously reported. Quantitative PCR using the standard curve method validated a subset of our array data. Through enrichment analysis of genes within CNV regions, we observed multiple chromosomes, terms and pathways that were significantly enriched, largely dealing with the major histocompatibility complex and immune responsiveness. Using an additional round of computational and statistical analysis with a different bioinformatic pipeline, we identified 43 CNVs among these as high‐confidence regions, 14 of which were found to be novel. We further compared and contrasted individuals of the two inbred lines to discover regions that have a significant difference in copy number between lines. A total of 40 regions had significant deletions or duplications between the lines. Gene Ontology analysis of genomic regions containing CNVs between lines also was performed. This between‐line candidate CNV list will be useful in studies with these two unique genetic lines, which may harbor variations that underlie quantitative trait loci for disease resistance and other important traits. Through the global discovery of novel CNVs in chicken, these data also provide resources for further genetic and functional genomics studies.  相似文献   

18.
Tsuang DW  Millard SP  Ely B  Chi P  Wang K  Raskind WH  Kim S  Brkanac Z  Yu CE 《PloS one》2010,5(12):e14456

Background

The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery.

Methodology and Principal Findings

We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212.

Conclusions and Significance

Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.  相似文献   

19.

Background

Somatically acquired structure variations (SVs) and copy number variations (CNVs) can induce genetic changes that are directly related to tumor genesis. Somatic SV/CNV detection using next-generation sequencing (NGS) data still faces major challenges introduced by tumor sample characteristics, such as ploidy, heterogeneity, and purity. A simulated cancer genome with known SVs and CNVs can serve as a benchmark for evaluating the performance of existing somatic SV/CNV detection tools and developing new methods.

Results

SCNVSim is a tool for simulating somatic CNVs and structure variations SVs. Other than multiple types of SV and CNV events, the tool is capable of simulating important features related to tumor samples including aneuploidy, heterogeneity and purity.

Conclusions

SCNVSim generates the genomes of a cancer cell population with detailed information of copy number status, loss of heterozygosity (LOH), and event break points, which is essential for developing and evaluating somatic CNV and SV detection methods in cancer genomics studies.  相似文献   

20.
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low‐copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD‐rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome‐wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号